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A. Ablation Study
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Figure 1. Ablation study on character decomposition.

Character Decomposition. To demonstrate the decompo-
sition capabilities of our core S-LRM and its impact on
the results, we compared our method with a direct refine-
ment approach that does not employ semantic decomposi-
tion. The visual comparison in Fig. 1 reveals that without
decomposition, the results exhibit a fusion of hair, clothing,
and the base human model, significantly limiting their po-
tential for downstream applications. In contrast, our method
successfully separates these components while maintaining
high mesh precision, showcasing the effectiveness of our
semantic decomposing approach.
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Figure 2. Ablation study on multi-layer refinement. Zoom in for
better details.

Multi-layer Refinement. We further illustrate the distinc-
tion between the direct output of our S-LRM and the results
after multi-layer refinement in Fig. 2. The pre-optimization
results demonstrate that our S-LRM successfully decom-

Figure 3. Rigging and animation comparisons on 3D character
generation. Our method demonstrates superior performance in hu-
man perception and physical characteristics.

poses various mesh components with correct geometry and
shape, validating the capabilities of our S-LRM. However,
the precision is limited due to the inherent characteristics of
FlexiCubes [12] and memory constraints. Post-refinement,
we observe a substantial enhancement in precision while
maintaining the overall structure. This improvement under-
scores the effectiveness of our multi-layer refinement pro-
cess in preserving the structure of the decomposed compo-
nents while significantly elevating the geometric accuracy
and overall quality of the reconstructed character.

B. More Applications

Compared to other 3D character generation methods, our
decomposed generation in A-pose is more suitable for
downstream animation and 3D applications. In Fig. 3, we
rig the 3D character generated by our approach and by Char-
acterGen [9] for comparison. Without decomposition, the
hair and clothing stick together and are attached to the base
human model. In contrast, our approach maintains sepa-
rated parts, aligning more closely with natural perception.
Additionally, the non-decomposed nature leads to inaccu-
rate deformations and physical characteristics during move-
ment, which our method effectively avoids.



C. Time Breakdown Analysis

Process Time (s)

Canonicalization Diffusion 7
Multi-view Diffusion 29
S-LRM 12
Refinement

- Single-layer Settings 18
- Multi-layer Settings 117

Table 1. Time breakdown for each processing step.

In Tab. 1, we present the time breakdown of different
components in our method. Creating a single-layered 3D
character takes only about 1 minute while generating a de-
composed, multi-layered 3D character requires less than
3 minutes. Our S-LRM is relatively efficient, with mini-
mal additional time and memory overhead compared to In-
stantMesh’s LRM.

D. More Quantitative Results

3D Semantic Metrics. To demonstrate our 3D seman-
tic decomposition capability, we extracted separate meshes
for three semantic categories (hair, cloth, and base human
model) and rendered masks from eight different views for
comparison with ground truth. In the arbitrary pose setting,
we achieved IoU scores of 0.73 for hair, 0.86 for cloth, and
0.88 for the base human model. These results demonstrate
effective semantic decomposition, particularly considering
the significant challenges in single-image-based 3D recon-
struction, such as spatial ambiguity and occlusion.
3D Geometric Metrics. Additional comparisons in the
arbitrary pose setting are presented in Tab. 2, where our
method demonstrates superior performance on both the
Chamfer distance and the F-score, showing a more precise
prediction of 3D geometry.

Metric Unique3D CharacterGen Ours

Chamfer Distance ↓ 0.109 0.035 0.023
F-Score ↑ 0.137 0.465 0.664

Table 2. 3D metric comparison (0.01 for f-score threshold).

Ablation Study on Refinement Stage. We conduct experi-
ments without refinement in Tab. 3 under arbitrary pose set-
ting, where we only apply color back-projection to the mesh
generated by S-LRM. The results indicate that our method
outperforms CharacterGen and Unique3D even without re-
finement, demonstrating that our S-LRM is effective even
without the refinement step.

Method SSIM ↑ LPIPS ↓ FID ↓ CLIP Similarity ↑
Unique3D 0.856 0.190 0.042 0.903
CharacterGen 0.869 0.134 0.119 0.901
Ours (w/o refine) 0.912 0.094 0.026 0.933
Ours 0.916 0.084 0.011 0.936

Table 3. Ablation study on refinement stage.

E. Dataset Construction

Semantic Definition. Unlike general 3D models, 3D
character modeling typically involves multiple components
rather than a single entity. This segmentation is essential
for downstream applications such as rigging and physical
simulation, which often require the manipulation of distinct
parts. Conventional reconstruction models only capture the
character’s surface appearance, lacking internal information
and the ability to decompose the model, which limitation
severely restricts subsequent applications. After consider-
ing both practical applications and data composition, we
have categorized character composition into three semantic
categories: base minimal-clothed human model, clothing,
and hair (specifically, shoes and underwear are classified as
part of the base human model, considering downstream ap-
plications and data characteristics). By incorporating these
semantic categories into our reconstruction process, we aim
to produce 3D character models that are not only visually
accurate but also functionally versatile for various uses in
3D game and animation pipelines. Note that our method
supports the learning and extracting of an arbitrary number
of semantic categories.
Data Cleaning. We begin by filtering out data that cannot
be layered according to semantic structure. Using multi-
ple prompts combined with ImageReward [15], we remove
low-quality or malicious data with low scores. Addition-
ally, we identify instances where semantic information pre-
dictions are inaccurate, then manually review and remove
data that appears semantically incorrect to human percep-
tion. Since the base human model in the original dataset
can occasionally contain defects, we apply a connectivity
check on the front rendering of every base human model.
Examples lacking connectivity are only used to supervise
either the complete model or the base human model with
clothing, but not the base human model alone.
Rendering Settings. Our rendering process goes beyond
standard image generation, incorporating depth, normal,
and semantic maps. 3D Character models are adjusted
to an A-pose configuration, with arms rotated 45 degrees
downward from the horizontal position. To facilitate multi-
layered reconstruction supervision, we rendered the com-
plete model and two additional configurations: the base
minimal-clothed human model alone, and the base model
with clothing. The rendering includes eight views at 45-
degree azimuth intervals with zero elevation, supplemented



by top-down and bottom-up views. We enriched the dataset
with five close-up facial views and 20 random viewpoints.
To enhance the training of our diffusion model, we imple-
mented data augmentation on varying arm angles.

We use the orthographic camera for all renderings. For
non-close-up views of the character, after normalizing the
character to fit within a unit cube, we set the ortho scale to
1.2. For close-up views of the face, we locate the 3D center
position and bounding box of the facial semantics, aligning
the camera’s center projection with the 3D center of the face
and setting the ortho scale to 1.2 times the bounding box
size. We render five facial close-up views at elevation = 0°
and azimuth angles of {−90◦,−45◦, 0◦, 45◦, 90◦}. For in-
puts to the canonicalization diffusion model, we add outline
and shading with a 50% probability. Rim lighting, shading,
and outlines (except on the face) are consistently removed
to supervise diffusion and S-LRM outputs. Semantic maps
are rendered by modifying non-transparent regions of the
texture map assigned to specific semantic parts.
Multi-layer Settings. We provide three different rendering
levels: the complete model, the base human model only,
and the base human model with clothes, each generated by
selectively removing specific semantic elements. For super-
vising S-LRM, these correspond to (1) no semantic mask-
ing, (2) masking of hair and clothing, and (3) masking of
hair only. By mixing these levels of 2D supervision, we can
train S-LRM to reconstruct multi-layered density, color, and
semantic information automatically.

F. Details of Loss Functions
In this section, we provide a detailed description of each
loss component in our framework. Lmse is the commonly
used mean squared error loss defined as:

Lmse =
∑
k

∥∥∥Îk − Igtk

∥∥∥2
2

(1)

where Îk, Igtk denotes the k-th view of rendered images and
ground-truth images, respectively.

Llpips is the perceptual loss defined as

Llpips =
∑
k

τ
(
ϕ(Îk), ϕ(I

gt
k )

)
(2)

where ϕ is the VGG feature extractor, τ transforms deep
embedding to a scalar LPIPS score.

Lmask is the mask loss defined as

Lmask =
∑
k

∥∥∥M̂k −Mgt
k

∥∥∥2
2

(3)

where M̂k and Mgt
k denote the rendered non-transparent

mask, and ground-truth masks, respectively.

The deviation loss Ldev penalizes the Euclidean distances
between each dual vertex v and the edge crossings ue ∈
Nv that bound its primal face, encourages vertices to center
within their cells and allowing flexibility for connectivity
adaptation:

Ldev =
∑
v∈V

MAD[{|v − ue|2 : ue ∈ Nv}] (4)

where | · |2 is the Euclidean distance, MAD(Y ) =
1

|Y |
∑

y∈Y |y − mean(Y )| denotes the mean absolute devi-
ation. We use the same approach as the implementation of
InstantMesh [14], applying L2 regularization with a weight
of 0.1 to the FlexiCubes weights.

During S-LRM training, we specifically incorporated fa-
cial semantics as an additional component to enhance the
training process and facilitate potential applications. In sub-
sequent stages, facial semantics were treated as an integral
part of the base human model. For the semantic cross-
entropy loss Lsem, we empirically assigned weights to four
semantic categories - hair (1.255), face (1.758), base human
model (0.913), and cloth (0.650) - based on their respective
rendering proportions in the dataset to optimize semantic
learning.

G. Implementation Details
We divide our Anime3D++ dataset into a training and test-
ing set in a 99:1 ratio. We first train the canonicalization
diffusion model at a 512 resolution with a learning rate of
5e-5, then reduce it to 1e-5 as we progressively increase the
resolution to 768 and 1024. Similarly, the multi-view dif-
fusion model is trained at a constant learning rate of 5e-5
while scaling from 512 to 768 and finally to 1024 resolu-
tion. We use LoRA with a 128-rank for S-LRM, a learning
rate of 4e-5, and three supervision stages with rendering
resolutions of 192, 144, and 512. The loss function pa-
rameters are set as λlpips, λmask, λsem, λdepth, λnormal, λdev =
2.0, 1.0, 1.0, 0.5, 0.2, 0.5. For multi-layer refinement, we
set λ′

mask, λ
′
normal, λcol = 1.0, 1.0, 100.0, and we further ex-

tract the coarse hair mask, applying additional normal and
mask loss for hair refinement with a weight of 1 and 10.
Detailed Structure of S-LRM. Following In-
stantMesh [14], our S-LRM adopts 6 RGB images
generated by multi-view diffusion in a resolution of
320 × 320 as model input. In the training stage 3 (training
on meshes with multi-layer semantics), we set the sampling
grid size for FlexiCubes extraction to 100 × 100 × 150,
with dimensions scaled to 0.7 × 0.7 × 1.05 of the triplane
size, and the centers of both are aligned. We integrate the
LoRA [4] structure into the S-LRM transformer, modifying
both the self-attention and cross-attention modules. For
self-attention, where q, k, and v values are produced by
shared linear layers, we substitute all input and output



linear layers with LoRA structures. In cross-attention,
where q, k, and v are produced through separate linear
layers, we replace the linear layers for q, k, v, and the
outputs with LoRA structures. The specifics are as follows:

hi = W i
0 +∆W i

tpx = W i
0x+Bi

tpA
i
tpx (5)

Here, i denotes the i-th transformer layer. In self-attention,
tp represents the linear projection for inputs and outputs,
while in cross-attention, tp denotes the linear projections
for q, k, v, and outputs. During the training process, the
DINO [1] encoder is kept frozen while the feature decoder
(including color/density decoder and semantic decoder) re-
mains trainable. In the triplane transformer, the positional
embeddings, de-convolution layers, and all LoRA layers are
set as learnable parameters, while all other layers are frozen.
Detailed Settings of Canonicalization Diffusion. Our
canonicalization diffusion model comprises a U-Net and a
ReferenceNet with an identical architecture, both networks
are initialized with the weights from Stable Diffusion 2.1.
The U-Net takes the CLIP-encoded features of the reference
image as input for the encoder-hidden states. ReferenceNet,
on the other hand, receives the image latents of the reference
image (encoded by a VAE without added noise) as input,
along with the features of a fixed text prompt, “high quality,
best quality,” encoded by CLIP [11], which are fed into the
encoder-hidden states. A cross-attention operation is ap-
plied for each corresponding layer pair in the U-Net and
ReferenceNet, using the current U-Net layer as the query
and the corresponding ReferenceNet layer as the key and
value. This cross-attention mechanism transfers the detailed
information of the reference image into the U-Net.
Detailed Settings of Multi-View Diffusion. Building upon
Era3D’s [8] multi-view model, we start training from its
inherited weights. We concatenate the noisy VAE latent
and reference image VAE latent as input to the U-Net.
For each view’s color and normal output, we specify fixed
prompts (”a rendering image of 3D models, {view} view,
{color/normal} map”), which are encoded through CLIP
and fed into the U-Net’s encoder hidden states. For U-Net’s
class labels, we reserve the first 1024 dimensions for the
CLIP embedding of the reference image, and replace the
noise level embedding in the latter 1024 dimensions with
a level switcher. This level switcher uses different one-hot
vectors for three distinct rendering levels to support the spe-
cific semantic combinations in the diffusion output, serv-
ing as supervision signals for multi-layer refinement. Since
the previous canonicalization diffusion step already ensures
that the output A-pose character reference image has eleva-
tion=0 and is orthographic, we do not employ the regression
loss from Era3D. Additionally, we fix the noise level of the
image VAE latent to 0 to achieve optimal fidelity.
Details of Color Back-projection. We employ a multi-
view projection method similar to Unique3D [13] to back-

project the texture onto the 3D character model. For each
vertex v that is visible in at least one view, we calculate its
final color C(v) in the 3D mesh using the following for-
mula:

C(v) =
∑
i∈I

wi(nv · di)
2cv,i

wi(nv · di)2
(6)

where cv,i represents the color corresponding to v in the
i-th view texture; nv and ni is the vertex normal of v
and the view direction of the i-th view respectively; wi is
the projection weight of the i-th view, and I is the set of
views where v is visible. In practice, we assign wi val-
ues of {2.0, 0.5, 0.0, 1.0, 0.0, 0.5} for views at azimuths of
{0◦, 45◦, 90◦, 180◦, 270◦, 315◦} respectively. For vertices
that are not visible in any view, we treat the 3D mesh as a
graph composed of vertices and edges, and iteratively per-
form convolution and mean pooling to transfer colors from
vertices with determined colors to those without, until all
vertices obtain their colors.
Pre- and Post-dilation of Mesh. To better solve the prob-
lematic intersections among meshes in the multi-layer re-
finement stage, we introduce a ”dilation” process applied
both before and after optimization. This process constructs
an approximate ”flow field” based on the original positions
of the inner and outer layer meshes.

For each vertex on the outside mesh, we utilize a kd-
tree to query its nearest vertex neighbors of the fixed in-
side mesh. The movement range is then smoothly weighted
based on the exponential inverse distance from these neigh-
bors, with distant points remaining stationary. This ap-
proach creates a ”dilation” effect, ensuring that when inner
layers are moved outward to resolve intersections, the outer
layers follow suit in a natural, gradual manner.

H. Discussions
Comparison with other decomposition methods. We
note that some works have also applied the concept of de-
composition, while they differ from our method in problem
definition and scope. GALA [5] and TELA [3] use real-
world 3D mesh scans and text as input respectively, em-
ploying Score Distillation Sampling (SDS) [10] with class-
specific text prompts and pose control for layered 3D avatar
generation. Frankenstein [16] takes a textureless, 2D se-
mantic layout as input and generates semantic-decomposed
3D meshes (also textureless) through triplane diffusion. In
contrast, our method accepts RGB reference images of ar-
bitrary characters and generates 3D character meshes that
faithfully preserve the reference texture while enabling se-
mantic decomposition in a feed-forward manner.

Regarding specific decomposition techniques, GALA
and TELA use SDS and different prompts to optimize both
individual parts and the whole iteratively, typically requir-
ing hours or more for a single case; Frankenstein outputs



separate SDFs for each semantic class, training and infer-
ring on datasets with specific semantics, while our method
treats geometry and semantics information independently,
enabling greater compatibility and scalability. Our method
can extract equivalent surfaces by specifying any combi-
nation of semantics, while maintaining compatibility with
general datasets like Objaverse [2] and preserving LRM’s
general performance. It also has the potential to achieve
semantic decomposition for multiple data types through a
single LRM paired with multiple semantic decoders. More-
over, when adding new semantic classes, our approach can
inherit geometric priors, making fine-tuning more efficient.

D-IF HiLoReference Image Ours

Figure 4. Comparison on THuman 2.0 dataset.

Reference Image Reference ImageResults Results

Figure 5. Our result on furry and 2.5D style images.

Non-anime style results. Our method demonstrates gener-
alization across diverse character types, as shown in Figs. 4
and 5. For realistic style, we compare with D-IF [17] and
HiLo [18] on THuman 2.0 dataset [19]. While the results
show slight stylistic bias inherently from the Anime3D++
training data (e.g., slim faces), our method is general with
robustness, canonicalization, and decomposition capabil-
ities even without real-human training data. To further
show our method’s 3D editing and decomposing ability, we
also directly compare the editing case in AvatarPopUp [7]
(Fig. 6). Our approach shows similar effectiveness on real-
human examples as AvatarPopUp and offers semantic de-
composition and style flexibility capabilities.

Reference AvatarPopUp Ours

“Wearing a 
purple shirt 

and grey jacket”

Figure 6. 3D editing comparison with AvatarPopUp.

Semantic definition and possible improvements. Our
Anime3D++ dataset adopts the VRoid-Hub data standard,
which is designed to align with VR/game requirements, par-
ticularly for animation and collision detection. Following
this standard, close-fitting garments are classified as part
of base human model, while outerwear (e.g., pants, skirts,
hoodies with long sleeves) is categorized as clothing. Al-
though our results currently support relatively few seman-
tic categories due to the limitations in datasets, our method
is general and the results demonstrate the feasibility of se-
mantic awareness generation. In future work, our frame-
work can be easily extended to support fine-grained se-
mantic decomposition by incorporating Segment Anything
Model (SAM) [6] to generate detailed semantic labels for
S-LRM training.
Design choice of Semantic-Equivalent SDF. Here we dis-
cuss why we don’t assign a dedicated decoder for each se-
mantic class to predict their SDFs separately. First, this
approach would not effectively utilize the prior knowledge
from the NeRF training stage. The SDF information pre-
dicted by these decoders would differ significantly from
what was learned in the previous stage, with each de-
coder only retaining ”its own” portion of the whole origi-
nal SDF. The semantic information learned during the last
stage would also become unusable. In contrast, our method
almost completely inherits the prior knowledge from the
NeRF training stage and smoothly transitions to the SDF
stage without any modifications to the network architecture.

Additionally, this alternative approach would suffer from
poor scalability - adding a new semantic class would require
adding and training a new triplane feature decoder nearly
from scratch and modifying the network structure, while
our method does not require relearning geometric informa-
tion when adding or removing semantics. It would also in-
crease computational and memory costs during both train-
ing and inference. Furthermore, without cross-semantic
constraints, the surfaces extracted from SDFs of different
semantic classes might intersect, which contradicts our re-
quirements. Another issue is that such a representation
would not be unified - we could only extract a surface for
each individual semantic class, but not for the entire char-



Figure 7. More visualizations on semantic-decomposed 3D generations.

acter or multiple selected semantic classes simultaneously.
In contrast, our solution can extract equivalent surfaces for
any combination of selected semantic classes with only one
decoder employed.

Limitations. We note several limitations that leave room
for future work: (1) Following InstantMesh [14], our S-
LRM produces triplanes with the resolution of 64 × 64.
After switching to SDF training, the FlexiCubes sampling
uses a grid size of only 150 height and 100 width. This res-
olution may constrain and limit further improvement in the
results. (2) While our pipeline enables high-quality gener-
ation by the high-resolution diffusion output up to a reso-
lution of 1024, this also slows the overall generation speed,
presenting a trade-off. Our S-LRM requires only about 10
seconds for one inference, with the majority of time con-

sumed in the diffusion and refinement, suggesting room for
further optimization. (3) The restricted style and category
diversity in the training data affects its ability to handle in-
puts that deviate significantly from the human-centric cate-
gories (e.g., animals or general 3D objects). Despite such
challenges, our framework is extensible, allowing further
improvements through tools like SAM for semantic label-
ing or SMPL label transfer for human datasets.

I. More Visualizations
We demonstrate more visualizations of semantic-
decomposed 3D results (Fig. 7), outputs of canonicalization
(Fig. 9) and multi-view (Fig. 8) diffusion model, com-
parisons with other methods (Fig. 10, 11) and multi-view
renderings (Fig. 12).



Figure 8. Visualizations of the 2D multi-view diffusion model results.



Figure 9. Visualizations of the 2D canonicalization diffusion model results.

Figure 10. More qualitative comparisons of 3D character generations (#1).



Figure 11. More qualitative comparisons of 3D character generations (#2).



Figure 12. More qualitative comparisons of 3D character generations (multi-view renderings).
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