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VISTA3D: A Unified Segmentation Foundation Model For 3D Medical Imaging
——Supplementary Material——

Supplementary Material

Figure 1. Distribution of annotated voxels in the training set (X-
axis: class index, Y-axis: number of annotated voxels per class).

1. Dataset Details001

Table 1 lists more details about our curated dataset. Fig. 1002
shows the number of annotated voxels according to the003
corresponding task classes. Spatial resolutions range from004
0.45× 0.45× 0.45 to 1.50× 1.50× 7.50 (median: 0.88×005
0.88× 1.50) mm3.006
Global and local index for the partial label Those datasets007
have different number of classes and indexes in their manual008
labels (e.g. Pancreas in MSD07 has index 1 but 10 in To-009
talsegmentatorV2). We curated a global index of 127 inte-010
gers and mapped all local indexes in each individual dataset011
to this global index. We also curated a label set list for each012
dataset, containing the class index that will be used within013
this dataset. We included as much dataset with a commer-014
cial license as possible for the development of this method.015

Dataset ID Type # cases used
TCIA Pancreas CT [12] Abdominal CT organs 80
AbdomenCT-1K [9] Abdominal CT organs 1,050
AMOS22 [7] Abdominal CT organs 300
MSD Task 3,6,7,8,9,10 [1] Various lesions 945
CT-ORG [11] Lung, bones, liver, kidneys, bladder 136
TotalSegmentator [4] Many anatomic structures 1,228
CRML-CT [15] Liver, colorectal liver metastases 197
VerSe [14] Vertebral labelling 374
AeroPath [16] Airways and lungs 27
Bone lesion (in-house) bones 296
LIDC-IDRI [2] Unannotated, lung cancer screening thoracic 470
COVID-19 [5] Unannotated, chest 524
TCIA Colonography [8] Unannotated, abdomen 1,440
StonyBrook COVID19 CT [13] Unannotated, chest 1,274
NLST [17] Unannotated, chest 3,113

Table 1. Summary of datasets used for model training.

2. Computational Details016

Training Requirements The model is trained on 64 32GB017
NVIDIA V100 GPUs with around 20,000 total GPU hours.018
The prompt number (object class) in a single training itera-019
tion is 36 for automatic branch, and 4 for point branch. The020

Figure 2. An example of whole class segmentation on a typical
sized human CT scan. Running on a lower end machine with
12GB GPU. The runtime for VISTA3D is 1m43s and 2m41s for
Totalsegmentator.

model can be trained with 16GB memory GPUs or even 021
lower by reducing the prompt number in each iteration, at 022
the cost of longer training time if number of classes is large. 023

Inference Requirements The inference GPU memory re- 024
quirements also depend on the prompt number and image 025
size. Since the model is based on sliding window of size 026
128x128x128, the GPU memory requirements can be opti- 027
mized to be stable and less dependent on image size. We 028
used a sliding window inferer with adaptive memory con- 029
trol to switch between CPU and GPU to avoid the out-of- 030
memory issue. We benchmarked the runtime on a 16GB 031
V100 GPU in the main paper. Totalsegmentator uses 5 032
sub-task models for different class groups and thus can be 033
slower. Here we also performed inference on a lower-end 034
environment with 12GB memory GPU and 32GB memory 035
CPU. The results of a typical CT scan (a MSD task03 test 036
scan [1], size 308x260x453 after resampling) are shown in 037
Fig. 2. The runtime for VISTA3D is 1m43s and 2m41s 038
for the Totalsegmentator. For interactive segmentation, the 039
single-click point inference run-time is 3.2s on the same 040
12GB GPU machine. Two examples are shown in Fig. 3. 041
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Figure 3. An example of using single point click for organ segmen-
tation. Runtime on a machine with 12GB GPU and 32GB CPU is
constant 3.2 seconds, regardless of image size or organ size.

3. Additional training details042

3.1. Stage1-Interactive branch training043

The algorithm is shown in Alg. 1. The point sampler S044
works as a data augmenter, with 50% probability to sam-045
ple points directly from y to get the point p and binary046
groundtruth mask ygt as a training pair, while another 50%047
will be used with the following augmentations: a) random048
sample points from supervoxel and form a zero-shot train-049
ing pair. b) random add or subtract a supervoxel mask that050
satisfies a certain size and position criterion to y, this is used051
to force the model to be able to edit supported class mask.052
Meanwhile, when the subtraction or addition size exceeds053
a certain limit, the generated training pair will also be used054
as zero-shot pairs with the zero-shot embedding. We use055
maxiter = 5 for the training.056

3.2. Stage3-Automatic branch training057

For each patch, we randomly sample the existing class058
indexes c from its manual label or pseudo-label and ob-059
tain the corresponding binary mask ygt or ypgt. The algo-060
rithm is shown in Alg. 2. Unlike traditional segmentation061
models that do softmax on multichannel output, our au-062
tomatic segmentation is based on promptable binary seg-063
mentation, thus prone to produce false positives. We mit-064
igate this issue by sampling the background prompts from065
label set−y.unique() or label set−yp.unique() and train066
the model to produce zero output when responding to the067
prompt. So in each iteration, a 128 cubic image patch is068

Algorithm 1 Interactive branch training

Require: VISTA interactive branch model Φ, image patch
x, image manual label y, image pseudo label yp, super-
voxel ys.

Ensure: At least one of y or yp are not None
S ← point sampler(y, ys) ▷ Initialize point sampler
based on manual label and supervoxel
Sp ← point sampler(yp, ys)
p, ygt ← S.sample() ▷ Sample point prompts p and
segmentation mask ygt
pp, ypgt ← S.sample()
for i = 1 to max iter do

loss← LossFunction(Φ(x, p), ygt)
lossp ← LossFunction(Φ(x, pp), ypgt)
update Φ using loss+ lossp
p = p ∪ Sample(Φ(x, p), ygt) ▷ Sample 1 point

each from false positive and negative region
pp = pp ∪ Sample(Φ(x, pp), ypgt)

end for

Figure 4. One-point interactive results for SAM2 and VISTA3D
on TotalSegmentatorV2 test split. SAM2 is finetuned on the train-
ing split with SAM2’s official finetuning script. Click point se-
lected at the center slice of each foreground.

the model input, and we sample a maximum of 32 class 069
prompts using Alg. 2 and a maximum of four background 070
prompts. All of those prompts are concatenated in the batch 071
dimension. 072

3.3. SAM2 finetuning experiments 073

We performed a detailed fine-tuning experiment to see if 074
the SAM2 object tracking-based algorithm can be applied 075
to 3D medical image segmentation. We used the official 076
SAM2 finetuning code1 and finetuned on the TotalSegmen- 077
tator [4] training set. Each axial slice is considered a video 078

1https://github.com/facebookresearch/sam2/tree/
main/training
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MSD Task07 Pancreas Pancreas Tumor
VISTA3D 0.802 0.603

SAM2-Finetuned 0.557 0.308

Table 2. Single click performance on MSD Task07 test set. SAM2
finetuned only on the training split.

Figure 5. Loss curves for finetuning SAM2 on TotalSegmentator
dataset.

frame. The model is trained on 8 80GB A100 GPU for 500079
epochs until full convergence as shown in Fig. 5. However,080
the results as shown in Fig. 4 is disappointing. We also081
finetuned on MSD Task07 pancreas and pancreas tumor to082
reduce the class number. The results can be shown in Ta-083
ble. 2. The SAM2 method can track objects with simple084
shape and clear boundary very well, like femur bones, but085
failed to track complicated 3D shapes. Similar findings can086
be found in [6].

Algorithm 2 Automatic branch training

Require: VISTA automatic branch model Φa with encoder
frozen, image patch x, image manual label y, image
pseudo label yp.

Ensure: At least one of y or yp are not None
c, ygt ← y.unique().sample() ▷ Sample class prompts
c and segmentation mask ygt
cp, ypgt ← yp.unique().sample()
loss← LossFunction(Φa(x, c), ygt)
lossp ← LossFunction(Φa(x, c

p), ypgt)
update Φa using loss+ lossp

087

4. Additional Results088

We provide additional VISTA3D results in this section. The089
baseline MedSAM [10] and SegVol [3] results are from090
their provided user interface and online hugging-face demo.091

4.1. Qualitative Results092

Editing examples We show an extreme example in Fig. 6,093
illustrating that VISTA3D supports detailed editing at pixel094

level, while the bounding box prompt cannot perform any 095
editing. 096
Hard Examples We show some hard classes like hepatic 097
vessel and pancreas in Fig. 7 and Fig. 8. Those classes 098
are included in VISTA3D’s and SegVol’s training sets. We 099
randomly picked an abdominal scan from the MSD task09 100
spleen test split. This dataset does not contain annotations 101
for pancreas or hepatic vessel, thus it can avoid groundtruth 102
leakage and provide fair comparison. 103
Zero-shot interactive examples In Fig. 9, we show the in- 104
teractive segmentation on a micro-CT mouse left lung. We 105
can see that MedSAM has a major weakness of not being 106
able to perform fine detailed editing, while SegVol’s re- 107
sponse resolution is low. Fig. 10 shows other slices of the 108
same mouse scan as Fig. 9. The figure shows a good point 109
response on slices even far away from the clicks, illustrat- 110
ing the ability of 3D annotation and reducing annotation ef- 111
fort. We also provide additional illustrations of Mouse-CT 112
dataset and our zero-shot results for left lung in Fig. 11. 113
Overfitting to common organs Due to the lack of diversity 114
of 3D organs, the model can easily overfit to certain classes 115
and remember the shapes, intensities, or locations. This is 116
beneficial for achieving superior segmentation accuracy, but 117
on the other hand, the model will ignore point clicks, even 118
without providing any semantic information about the class. 119
An example is shown in Fig. 12. We click a point outside of 120
the kidney to segment the fluid around, and this should be 121
zeroshot. SegVol directly segments the kidney and ignores 122
the point. VISTA3D avoids this problem by using the zero- 123
shot embedding and the novel model and recipe design. The 124
area outside of organ is relatively easy; what if we want to 125
forcefully segment a supported organ into sub-parts? We 126
show an example in Fig. 13. If we click positive points on 127
the liver, the model tends to ignore the points and directly 128
segment the liver. Adding a zero-shot embedding will make 129
the model follow the clicks much better. 130

4.2. Quantitative Results 131

We provide detailed Dice scores on all the classes of our test 132
datasets. The result is shown in Table. 3. 133

5. Additional Discussions 134

The VISTA3D model design will naturally raise two ques- 135
tions, why not share decoder and why share encoder. If we 136
share the encoder and decoder, then automatic and interac- 137
tive will be trained together, which will 1) slow down the 138
training. Interactive branch is much more memory inten- 139
sive than automatic branch, and the supervoxels are only 140
used for interactive training, thus, automatic branch can use 141
a much larger batch size. Combine these two training will 142
reduce automatic branch training iteration and its perfor- 143
mance. 2) There are internal conflicts between zero-shot 144
and automatic segmentation, our pilot study showed worse 145
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Figure 6. Fine-grained editing on blurry boundary. Red is positive point and blue is the negative point. This is an extreme example to show
that VISTA3D can edit one-pixel wide boundaries. The addition or removal area depends on the model’s understanding of boundaries, and
the edited area by a single click could be much larger.

Figure 7. Single positive point for hepatic vessel segmentation (example from MSD09 spleen held out test set, no hepatic vessel groundtruth
to avoid groundtruth leakage). SegVol demo uses blue dot while VISTA3D demo uses red dot to represent positive clicks. VISTA3D
achieved much better results in details.

results and our auto-branch is not able to reach state-of-146
the-art results once trained together with interactive branch.147
Sharing encoder has two purposes, 1) we support interactive148
editing over automatic results, the shared encoder could re-149
duce inference computation cost. 2) The interactive branch150
can be trained with a much broader range of data, thus the151
encoder can extract more generalizable features and help152
with the generalizability of automatic segmentation.153
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Figure 8. Automatic (semantic) segmentation for pancreas (example from MSD09 spleen held out test set, no pancreas groundtruth).
VISTA3D achives much better results in details and segmentation completeness.

Figure 9. Interactive segmentation on micro-CT mouse left lung. Baseline results from MedSAM local user interface and SegVol demo.

Figure 10. 3D point response on far away slices. The point click is on slice 304 (same as Fig. 9), but the segmentation on slices 280, 296,
312, and 328 all showed good results, showing the potential of reducing annotation effort in 3D space.
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Figure 11. The mouse micro-CT example and the mouse left lung zero-shot performances. Even ”left lung” is in the supported class, the
huge structural difference between human and mice will fail any automatic segmentation model trained on human anatomy.

Figure 12. The overfitting problem with common organs. Due to the lack of diversity of 3D organs, the model can easily overfit to certain
classes and ignore point clicks, even without providing any semantic information about the class. We click a positive point outside of kidney
to segment the fluid around, and this should be zeroshot. SegVol directly overfits to segment kidney and ignores the points. VISTA3D
avoided this problem by using the zero-shot embedding and the novel model and recipe design.

Figure 13. Use points to forcefully separate liver into substructures. We can see that VISTA3D with zero-shot embedding responds much
better to the clicks. However, if the model uses supported class embedding, the model is reluctant to respond to negative points for liver
segmentation.
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Table 3. Dice score of all the classes on the test datasets.

Auto-
3dSeg nnUNet TotalSeg-

mentator
VISTA3D

auto
VISTA3D

point
VISTA3D

auto + point
MSD03 Hepatic Tumor
liver 0.943 0.947 0.942 0.959 0.874 0.961
hepatic tumor 0.616 0.617 - 0.588 0.701 0.687
MSD06 Lung Tumor
lung tumor 0.562 0.554 - 0.614 0.682 0.719
MSD07 Pancreatic Tumor
pancreas 0.785 0.789 0.775 0.819 0.802 0.840
pancreatic tumor 0.485 0.488 - 0.324 0.603 0.638
MSD08 Hepatic Tumor
hepatic vessel 0.627 0.584 - 0.553 0.582 0.670
hepatic tumor 0.683 0.659 - 0.682 0.733 0.757
MSD09 Spleen
spleen 0.965 0.967 0.935 0.952 0.938 0.954
MSD10 Colon Tumor
colon cancer primaries 0.475 0.473 - 0.439 0.609 0.633
AeroPath
lung 0.982 0.974 0.957 - - -
airway 0.896 0.899 - 0.852 0.819 0.867
Bone Lesions
bone lesions 0.343 0.396 - 0.491 0.536 0.585
BTCV-Abdomen
spleen 0.954 0.962 0.951 0.944 0.950 0.955
right kidney 0.936 0.951 0.941 0.943 0.937 0.945
left kidney 0.942 0.932 0.944 0.942 0.938 0.946
gallbladder 0.663 0.771 0.739 0.794 0.792 0.807
esophagus 0.740 0.740 0.793 0.779 0.799 0.821
liver 0.964 0.961 0.970 0.967 0.715 0.969
stomach 0.876 0.797 0.946 0.944 0.938 0.946
aorta 0.929 0.909 0.929 0.931 0.925 0.932
inferior vena cava 0.834 0.827 0.854 0.842 0.729 0.856
portal vein and splenic vein 0.649 0.752 0.781 0.775 0.734 0.780
pancreas 0.759 0.820 0.807 0.841 0.797 0.853
right adrenal gland 0.604 0.661 0.696 0.692 0.673 0.699
left adrenal gland 0.638 0.642 0.643 0.646 0.666 0.660
BTCV-Cervix
bladder 0.730 0.752 0.785 0.800 0.863 0.871
prostate or uterus 0.714 0.675 - 0.587 0.691 0.714
rectum 0.719 0.688 - - -
small bowel 0.466 0.527 0.437 0.544 0.608 0.679
VerSe
vertebrae C1 0.795 0.862 0.875 0.859 0.844 0.863
vertebrae C2 0.867 0.852 0.909 0.881 0.862 0.890
vertebrae C3 0.804 0.844 0.882 0.828 0.863 0.869
vertebrae C4 0.796 0.874 0.877 0.857 0.811 0.868
vertebrae C5 0.794 0.855 0.878 0.851 0.861 0.864
vertebrae C6 0.808 0.816 0.877 0.865 0.863 0.874
vertebrae C7 0.798 0.822 0.892 0.857 0.878 0.887
vertebrae T1 0.832 0.800 0.901 0.847 0.898 0.897
vertebrae T2 0.817 0.840 0.887 0.862 0.899 0.905
vertebrae T3 0.808 0.837 0.836 0.848 0.892 0.894
vertebrae T4 0.777 0.775 0.790 0.844 0.896 0.903
vertebrae T5 0.745 0.794 0.776 0.827 0.898 0.908
vertebrae T6 0.713 0.782 0.766 0.818 0.905 0.913
vertebrae T7 0.723 0.887 0.742 0.822 0.912 0.919
vertebrae T8 0.710 0.847 0.759 0.791 0.912 0.920
vertebrae T9 0.722 0.826 0.810 0.804 0.916 0.925
vertebrae T10 0.770 0.852 0.803 0.786 0.922 0.928
vertebrae T11 0.776 0.837 0.820 0.822 0.926 0.932
vertebrae T12 0.835 0.798 0.879 0.870 0.927 0.931
vertebrae L1 0.873 0.871 0.915 0.864 0.930 0.936
vertebrae L2 0.822 0.800 0.871 0.811 0.929 0.932
vertebrae L3 0.787 0.876 0.798 0.752 0.927 0.928
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vertebrae L4 0.755 0.773 0.722 0.707 0.930 0.932
vertebrae L5 0.740 0.763 0.716 0.735 0.913 0.919
vertebrae L6 0.434 0.475 - - - -
AbdomenCT-1K
liver 0.978 0.982 0.969 0.974 0.896 0.976
kidney 0.947 0.944 0.912 - - -
spleen 0.967 0.976 0.968 0.966 0.959 0.964
pancreas 0.857 0.860 0.828 0.865 0.853 0.881
AMOS22
spleen 0.953 0.946 0.930 0.934 0.933 0.946
right kidney 0.955 0.943 0.940 0.945 0.937 0.949
left kidney 0.944 0.950 0.925 0.931 0.938 0.948
gallbladder 0.779 0.832 0.813 0.847 0.814 0.855
esophagus 0.805 0.808 0.777 0.776 0.783 0.805
liver 0.971 0.972 0.958 0.959 0.901 0.960
stomach 0.858 0.855 0.882 0.876 0.863 0.889
aorta 0.944 0.953 0.914 0.917 0.897 0.921
inferior vena cava 0.889 0.870 0.809 0.855 0.669 0.865
pancreas 0.809 0.840 0.773 0.797 0.757 0.828
right adrenal gland 0.744 0.708 0.683 0.700 0.657 0.721
left adrenal gland 0.740 0.714 0.684 0.704 0.687 0.724
duodenum 0.743 0.754 0.639 0.704 0.337 0.729
bladder 0.824 0.808 0.809 0.826 0.819 0.847
prostate or uterus 0.817 0.827 - 0.788 0.790 0.828
TotalSegmentatorV2
spleen 0.957 0.969 0.982 0.967 0.965 0.971
right kidney 0.949 0.940 0.962 0.934 0.930 0.948
left kidney 0.942 0.922 0.961 0.920 0.921 0.941
gallbladder 0.807 0.843 0.896 0.827 0.782 0.833
liver 0.964 0.965 0.982 0.968 0.944 0.974
stomach 0.929 0.935 0.960 0.931 0.917 0.939
aorta 0.954 0.961 0.961 0.959 0.949 0.965
inferior vena cava 0.892 0.902 0.896 0.883 0.695 0.896
portal vein and splenic vein 0.757 0.830 0.835 0.801 0.744 0.818
pancreas 0.845 0.856 0.917 0.860 0.833 0.877
right adrenal gland 0.805 0.877 0.909 0.863 0.834 0.869
left adrenal gland 0.808 0.866 0.914 0.873 0.851 0.881
left lung upper lobe 0.943 0.939 0.979 0.953 0.931 0.955
left lung lower lobe 0.928 0.953 0.964 0.938 0.899 0.944
right lung upper lobe 0.896 0.912 0.919 0.878 0.872 0.905
right lung middle lobe 0.905 0.939 0.952 0.916 0.909 0.930
right lung lower lobe 0.928 0.950 0.974 0.943 0.893 0.951
vertebrae L5 0.909 0.930 0.946 0.916 0.916 0.933
vertebrae L4 0.899 0.929 0.947 0.899 0.917 0.933
vertebrae L3 0.892 0.927 0.967 0.925 0.934 0.957
vertebrae L2 0.925 0.928 0.975 0.936 0.950 0.968
vertebrae L1 0.904 0.917 0.967 0.919 0.934 0.955
vertebrae T12 0.902 0.912 0.961 0.902 0.930 0.948
vertebrae T11 0.899 0.922 0.970 0.900 0.930 0.952
vertebrae T10 0.900 0.918 0.972 0.901 0.937 0.955
vertebrae T9 0.886 0.918 0.976 0.901 0.936 0.960
vertebrae T8 0.882 0.893 0.967 0.872 0.913 0.949
vertebrae T7 0.822 0.886 0.920 0.831 0.890 0.920
vertebrae T6 0.840 0.902 0.943 0.878 0.910 0.933
vertebrae T5 0.869 0.923 0.944 0.891 0.904 0.930
vertebrae T4 0.876 0.910 0.948 0.887 0.910 0.935
vertebrae T3 0.888 0.926 0.950 0.895 0.903 0.935
vertebrae T2 0.909 0.918 0.967 0.920 0.922 0.949
vertebrae T1 0.907 0.945 0.969 0.933 0.926 0.950
vertebrae C7 0.894 0.943 0.964 0.923 0.901 0.937
vertebrae C6 0.839 0.840 0.941 0.882 0.864 0.917
vertebrae C5 0.797 0.852 0.915 0.825 0.852 0.862
vertebrae C4 0.860 0.859 0.944 0.904 0.881 0.917
vertebrae C3 0.857 0.936 0.956 0.905 0.905 0.926
vertebrae C2 0.908 0.953 0.972 0.910 0.872 0.933
vertebrae C1 0.884 0.862 0.935 0.894 0.848 0.896
esophagus 0.874 0.913 0.952 0.907 0.886 0.916
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trachea 0.926 0.945 0.974 0.941 0.910 0.946
brain 0.870 0.946 0.943 0.894 0.892 0.903
left iliac artery 0.822 0.896 0.916 0.895 0.872 0.906
right iliac artery 0.820 0.879 0.915 0.875 0.877 0.899
left iliac vena 0.841 0.898 0.941 0.917 0.899 0.925
right iliac vena 0.834 0.884 0.919 0.890 0.846 0.908
small bowel 0.854 0.868 0.918 0.834 0.840 0.865
duodenum 0.779 0.805 0.900 0.822 0.596 0.848
colon 0.882 0.882 0.948 0.898 0.819 0.906
left rib 1 0.914 0.938 0.948 0.909 0.875 0.918
left rib 2 0.934 0.927 0.966 0.932 0.909 0.943
left rib 3 0.906 0.929 0.950 0.910 0.885 0.907
left rib 4 0.908 0.936 0.947 0.903 0.887 0.927
left rib 5 0.878 0.895 0.933 0.889 0.889 0.928
left rib 6 0.865 0.912 0.925 0.866 0.884 0.916
left rib 7 0.885 0.907 0.942 0.877 0.901 0.934
left rib 8 0.902 0.888 0.955 0.890 0.910 0.941
left rib 9 0.910 0.901 0.953 0.897 0.916 0.944
left rib 10 0.911 0.883 0.949 0.893 0.906 0.937
left rib 11 0.891 0.894 0.949 0.903 0.911 0.938
left rib 12 0.885 0.873 0.912 0.883 0.871 0.909
right rib 1 0.905 0.938 0.945 0.907 0.875 0.912
right rib 2 0.933 0.946 0.959 0.924 0.888 0.929
right rib 3 0.906 0.938 0.931 0.891 0.854 0.900
right rib 4 0.928 0.942 0.949 0.906 0.882 0.926
right rib 5 0.905 0.893 0.916 0.876 0.877 0.914
right rib 6 0.900 0.929 0.951 0.886 0.907 0.932
right rib 7 0.903 0.914 0.960 0.884 0.915 0.942
right rib 8 0.888 0.928 0.959 0.887 0.913 0.941
right rib 9 0.892 0.928 0.950 0.890 0.920 0.946
right rib 10 0.900 0.927 0.949 0.896 0.916 0.945
right rib 11 0.880 0.924 0.933 0.885 0.891 0.924
right rib 12 0.885 0.906 0.917 0.883 0.880 0.907
left humerus 0.911 0.867 0.930 0.854 0.881 0.903
right humerus 0.916 0.794 0.940 0.873 0.884 0.913
left scapula 0.910 0.949 0.959 0.911 0.887 0.921
right scapula 0.916 0.923 0.959 0.922 0.887 0.920
left clavicula 0.955 0.917 0.975 0.952 0.931 0.956
right clavicula 0.937 0.940 0.973 0.945 0.933 0.952
left femur 0.944 0.882 0.970 0.940 0.944 0.954
right femur 0.944 0.911 0.980 0.945 0.957 0.959
left hip 0.944 0.937 0.975 0.947 0.938 0.955
right hip 0.939 0.932 0.986 0.950 0.961 0.959
sacrum 0.925 0.933 0.958 0.915 0.895 0.922
left gluteus maximus 0.925 0.927 0.977 0.940 0.938 0.949
right gluteus maximus 0.917 0.930 0.978 0.937 0.937 0.949
left gluteus medius 0.919 0.926 0.973 0.931 0.923 0.923
right gluteus medius 0.908 0.927 0.978 0.938 0.937 0.946
left gluteus minimus 0.875 0.917 0.965 0.914 0.903 0.919
right gluteus minimus 0.876 0.920 0.967 0.915 0.896 0.921
left autochthon 0.939 0.934 0.978 0.951 0.932 0.953
right autochthon 0.941 0.932 0.976 0.941 0.927 0.947
left iliopsoas 0.876 0.910 0.965 0.921 0.898 0.926
right iliopsoas 0.876 0.916 0.952 0.907 0.898 0.914
bladder 0.890 0.906 0.934 0.899 0.895 0.915
left atrial appendage 0.863 0.900 0.942 0.901 0.873 0.910
brachiocephalic trunk 0.872 0.899 0.936 0.892 0.888 0.915
left brachiocephalic vein 0.881 0.919 0.945 0.903 0.885 0.898
right brachiocephalic vein 0.862 0.909 0.922 0.884 0.869 0.901
left common carotid artery 0.826 0.884 0.925 0.868 0.828 0.891
right common carotid artery 0.755 0.858 0.885 0.811 0.784 0.844
costal cartilages 0.844 0.868 0.888 0.856 0.833 0.864
heart 0.932 0.928 0.937 0.919 0.916 0.924
left kidney cyst 0.623 0.858 0.892 0.618 0.752 0.858
right kidney cyst 0.568 0.841 0.716 0.606 0.615 0.681
prostate 0.743 0.752 0.808 0.744 0.745 0.774
pulmonary vein 0.838 0.820 0.916 0.830 0.847 0.863
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skull 0.909 0.849 0.893 0.827 0.769 0.857
spinal cord 0.911 0.950 0.959 0.934 0.905 0.937
sternum 0.896 0.906 0.897 0.899 0.884 0.911
left subclavian artery 0.833 0.901 0.929 0.877 0.857 0.892
right subclavian artery 0.818 0.870 0.916 0.861 0.850 0.885
superior vena cava 0.894 0.899 0.932 0.888 0.905 0.923
thyroid gland 0.832 0.886 0.908 0.866 0.853 0.890
vertebrae S1 0.870 0.906 0.925 0.890 0.880 0.909
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