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Supplementary Material

Appendix A introduces the preliminaries of 3DGS. The
detailed formulations of the two quantitative metrics are
presented in Appendix B. Additionally, Appendix C out-
lines the post-processing techniques applied to ensure the
preservation of human characteristics in image editing. Ap-
pendix D elaborates on the failure cases and proposes a mit-
igation strategy to address it. Finally, Appendix E show-
cases additional VTON results, including those from a real
3D scene used in GaussianVTON [6].

A. 3D Representation: Gaussian Splatting
3D Gaussian Splatting (3DGS) [25] has emerged as a
prominent technique in 3D reconstruction due to its abil-
ity to render high-quality scenes in real-time. Unlike tradi-
tional point cloud based methods, which directly represent
scenes as discrete points, 3DGS models each point as a con-
tinuous Gaussian function gi:

  g_i( \mathbf {\mathit {x}}; \mathbf {\mathit {\mu }}_i, \mathbf {\mathit {\Sigma }}_i ) = e^{ - \frac {1}{2} (\mathbf {\mathit {x}} - \mathbf {\mathit {\mu }}_i)^\top \mathbf {\mathit {\Sigma }_i} (\mathbf {\mathit {x}} - \mathbf {\mathit {\mu }}_i) } ,   



 (7)

where x is the position vector of gi, µi ∈ R3 and Σi ∈ R3×3

are gi’s mean and covariance matrix, respectively. Then, gi
is projected onto a 2D image plane to facilitate rendering.
This projection yields a new mean vector µi

′ ∈ R2 and an
updated covariance matrix Σ ′

i ∈ R2×2 defined as:

  \mathbf {\mathit {\mu _i}}^\prime = \mathbf {\mathit {K}} \mathbf {\mathit {T}} [\mathbf {\mathit {\mu _i}}^\top , 1]^\top , \mathbf {\mathit {\Sigma }}^{\prime }_i = \mathbf {\mathit {J}} \mathbf {\mathit {T}} \mathbf {\mathit {\Sigma }}_i \mathbf {\mathit {T}}^\top \mathbf {\mathit {J}}^\top , 
  

 
 

 (8)

where J is the Jacobian matrix derived from the affine ap-
proximation of the perspective projection, T and K denote
the extrinsic and intrinsic matrices, respectively. Given the
color ci and opacity αi at the Gaussian center point, the ren-
dered color at a 2D pixel p is calculated as follows:

  \begin {aligned} \mathbf {\mathit {C}}_{\mathbf {\mathit {p}}} &= \sum _{i=1}^{N}{ \mathit {\alpha }_i \mathit {c}_i \mathit {T}_i \mathit {g}_i( \mathbf {\mathit {p}}; \mathbf {\mathit {\mu }}^{\prime }_i, \mathbf {\mathit {\Sigma }}^{\prime }_i ) } \\ \mathit {T}_i &= \prod _{j=1}^{i-1}{ ( 1 - \mathit {\alpha }_j \mathit {g}_j( \mathbf {\mathit {p}}; \mathbf {\mathit {\mu }}^{\prime }_j, \mathbf {\mathit {\Sigma }}^{\prime }_j ) ) } , \end {aligned} 























(9)

where Ti denotes the cumulative transmission along the ray.

B. Metrics
In the quantitative evaluation, we employ two metrics:
• Average DINO Similarity [63], which measures the align-

ment between the garment image and the edited 3D hu-
man.

• CLIP Directional Consistency Score [17], which evalu-
ates multi-view consistency.

Specifically, given an edited 3D human (after VTON), 120
views are uniformly projected around its central axis. These
views are divided into three categories based on orientation:
Sf , Sb, and Ss, corresponding to 40 front views, 40 back
views, and 40 side views, respectively. Let D(·) represent
the normalized DINO embedding and C(·) denote the nor-
malized CLIP embedding. Using these, we formally define
the two metrics as follows:

  {\small \begin {aligned} \text {DINO}_{sim}&=\frac {1}{80}(\sum _{i\in S_{f}}D(g_f)\cdot D(e_i)+\sum _{i\in S_{b}}D(g_b)\cdot D(e_i))\\ \text {CLIP}_{cons}&=\frac {1}{120}\sum _i (C(e_i)-C(o_i))\cdot (C(e_{i+1})-C(o_{i+1})) \label {eq:metrics} \end {aligned}} 







  













   

(10)
where ei, ei+1 and oi, oi+1 denotes the two consecutive
novel views from the edited 3DGS and the original 3DGS,
respectively.

C. Post-processing
The clothing-agnostic maps A often mask parts of the face
and hair, particularly for females. Due to the inherent prop-
erties of the diffusion model, it is unable to fully restore
the intricate details of these masked regions. To ensure
high-fidelity preservation of human characteristics, we ap-
ply a post-processing step where, after editing the rendered
views, we “copy” the face and hair from the original im-
age o onto the edited image e. Specifically, let m represent
the region corresponding to the face and hair, which can be
extracted from the parsed map during pre-processing, we
implement post-processing as:

  e = (1-m)\cdot e + m\cdot o       (11)

Figure 8. Our multi-view editing may fail in certain views with
complex poses (red box in pink background) but these views can
be automatically discarded to mitigate their impact on 3D VTON
(blue background).

D. Limitations
As shown in Fig. 8, our method may fail in certain views
with complex postures. To address this, we use Z-Score



Normalization to automatically identify and discard prob-
lematic views based on the view reconstruction loss during
the process of lifting multiple views to 3D space, mitigating
their adverse impact.

E. Additional Visualization Results
Fig. 9 illustrates additional VTON results. The first two
rows showcase results from the THuman2.0 dataset; the
middle two rows showcase results from the MVHuman-
Net dataset. To further demonstrate the effectiveness of
our method, we apply it on a real 3D scene used in Gaus-
sianVTON [6]. The last two rows in Fig. 9 illustrate
these VTON results with the model trained on Thuman2.0
dataset. Despite the data gap, including w/wo background
and unseen camera poses, our method exhibits robust per-
formance and preserves the details of the clothing well.



Figure 9. Additional visualization results. The first, middle, and last two rows show results on Thuman2.0, MVHumanNet, and a real 3D
scene used in GaussianVTON, respectively.
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