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Overview

This supplementary material, provides additional technical
details on the normal integration, the final algorithm and ad-
ditional evaluation results that have been removed from the
main document due to page constraints. For easier naviga-
tion and cross-referencing, we follow the section titles of
the submitted paper. For a quick overview, we briefly list
the content of the Appendix:

* Appendix A provides additional details on the integra-
tion, improving further the surface reconstruction accu-
racy compared to previous work[5].

* Appendix B describes additional details on the computa-
tion of quadrics and the linear system to solve.

* Appendix C provides additional comparisons to previous
work, quantitative analysis on the reconstruction accuracy
and qualitative examples.

* Appendix D is a list of all the datasets we used together
with the urls to find them.

Finally, we included samples of the reconstructed sur-
faces using our method (ours.obj) and using [5]
(adaptive.obj) for

* Michelangelo’s David (Fig. 1 of the manuscript) and
« all five objects in the DiLiGenT-MV [6] dataset (recon-
structed from the first view each).

These samples can be found in the respectives subdirecto-
ries of meshes/ of this supplementary material.

A reference implementation of our method is avail-
able under https://moritzheep.github.io/
anisotropic—-screen—-meshing.

A. Screen Space Mesh Decimation

In the following, we will provide more detail on our mesh-
based integration and the underlying sparse linear system,
that slightly differs from [5] but improves the reconstruction
accuracy even further.
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A.1. Details on Mesh-Based Normal Integration

The unified functional for normal integration is
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with the respective choices for i~ and D depending on the
projection type — orthographic or perspective. In the case
of pixel-based integration, the partial derivatives are discre-
tised by using each pixel and its immediate neighbourhood.
In the case of mesh-based integration, the pixel neighbour-
hood is replaced by adjacent vertices.

Previous work [5] showed that the minimiser of Epy, is
found by solving the sparse linear system
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for each vertex v € V. All vertices w that are connected
by an edge with vertex v have an impact on depth z,. We
denote these vertices by V,,. The faces adjacent to the edge
(v, w), denoted as F, ,, define the strength of the influence
of w. The edge weights wy . 1= cot(af,vw) are given by
the cotangent of the angle in f that is opposite to (v, w).
The weights are identical to those of the Cotan-Laplacian
[8]. Together with the two parameters [5]

my :/<f,ﬁ>2d9 3)
f

f<F, ) - (”) dQ )

they ensure that the integration yields the same results for
different triangulations. Previously, these parameters have
been calculated by assuming a constant face normal 7. In
contrast, we found that

1
my =15 Z (P 7p) &)
Psl 7,
T D - = na:)
br = —— (1, Myp) - (6)
f |Pf|< P p> (ny )


https://moritzheep.github.io/anisotropic-screen-meshing
https://moritzheep.github.io/anisotropic-screen-meshing

Our Decimation,
[1] Isotropic [5] [5]’s Integration Ours
Dataset ‘ Ref | low mid high ‘ low mid high | low mid high
é) Bear 297 | 3.95 3.65 3.37 | 3.67 333 3.19 | 3.84 3.38 3.04
S | Buddha | 6.74 | 7.74 754 733 | 730 7.10 7.08 | 6.86 6.68 6.61
ED Cow 2.45 | 3.42 3.12 296 | 3.23 3.00 2.86 | 3.07 2.85 2.74
£ | Pot2 5.15 | 5.89 5.77 5.65 | 5.72 5.59 548 | 5.63 5.47 5.29
O | Reading | 6.34 | 7.08 6.93 6.83 | 6.88 6.76 6.64 | 6.82 6.67 6.50
v Bear 291 | 3.94 3.72 347 | 3.64 348 3.33|3.69 3.22 2.90
‘2 | Buddha | 6.75 | 7.74 753 740 | 731 713 7.09 | 6.83 6.68 6.62
§ Cow 2.35 | 3.49 3.24 3.07 | 329 3.09 299 | 297 2.77 2.63
E Pot2 499 | 6.04 586 5.76 | 5.81 5.69 5.61 | 548 5.32 5.16
Reading | 6.28 | 7.19 6.94 6.85 | 6.91 6.77 6.69 | 6.74 6.52 6.45

Table 1. Comparison of the average RMSE over all 20 views of DiLiGenT-MV: Isotropic remeshing and integration from [5], our deci-
mation combined with the integrator of [5] and our decimation with our integrator. Our finer approximation of the integration parameters

yields to a tighter approximation of the underlying surface.

is a tighter approximation that considers variations of the
normals within the faces and yields more accurate surface
integrations, see Tab. 1.

B. Algorithm

In this section, we want to express the quadrics in a more
familiar form of a quadratic function and derive the linear
system to solve during vertex alignment.

B.1. Explicit Form of the Quadrics

In Eq. (9) of the main paper, we defined the quadric for the
continuous case as follows:
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where both energy terms can be unified into one term by the

norm induced by
M (%) = 7(Z) - A(@)" + X-1, 8)

cf. Eq. (13) of the main work. To obtain the known form of
a quadratic problem,
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we have to apply the binomial formula to the integrand and
rearrange the addends. In the end, we get
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for the quadratic part,
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for the linear part and
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for the constant part.
In the discretised version (Eq. 12 of the main document),
we replace the integral by a sum:
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Similarly, the integral is replaced by a sum in the coeffi-
cients of the linear system:
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where M,, = i, - i, +- A1 from the pixel normals 77,,. How-
ever, when solving for the optimal vertex positions, we con-
sider the following quadric:
Qo (6%,) = Qu(Jf - 67,) (16)
which is now in R? since J fo R? — R3. Hence, we must
replace 0% — J-0Z, in Eq. (9). As aresult, the coefficients



of this quadratic function are:

A, =JtA Ty, (17)
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To find the final displacement du,, that moves vertex v into
its optimal position, we solve

A0 =b, . (20)

By doing so, we neglect the influence of a vertex displace-
ment on the adjacent vertices and their quadrics, which is a
common approximation in mesh-processing [2, 10].

C. Evaluation

In this section, we provide additional benchmark results and
insights on how the compression ratio and reconstruction
error depend on the user-set decimation threshold. Further
error maps are found in Appendix C.3. We also discuss two
interesting outliers: One, where our anisotropic decimation
method is more accurate than the pixel-based reference and
one, where a higher decimation threshold, i.e. lower res-
olution mesh, surpasses higher resolutions. At the end of
this section, we depict reconstructions of all objects of the
LUCES [7], RGBN [9] and PS [3] dataset for various val-
ues of the decimation threshold and report vertex count and
compression ratios.

C.1. Benchmark Comparison

To evaluate our method against previous work on mesh-
based integration [5], we listed only the orthographic pro-
jection for the DiLiGenT-MV dataset [60] in the main doc-
ument. We complement this comparison with the results
of the perspective projection in Tab. 1. Furthermore, we
perform the same evaluation on the LUCES dataset [7], but
only for the perspective projection. Since this dataset is ded-
icated to near-field photometric stereo, i.e. objects are very
close to the camera, the orthographic projection is an un-
suitable approximation. As in previous tests, we match the
vertex count to the low, mid and high settings of previous
work [5]. Results are listed in Tab. 2. Again, our method
generates tighter approximations of the underlying surface.

C.1.1 Inspecting the Buddha Results in DiLiGenT-MV

We noticed that our decimation-based method at the “high’
accuracy setting outperforms the pixel-based baseline in the
case of the BUDDHA figurine in the DiLiGenT-MV dataset.
This is surprising as our method uses fewer vertices than
the pixel-based method. To investigate the origin of this re-
sult, we examined the differences in each view. Figure |
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Figure 1. Top: Error map and RMSE for pixel-based [1] (left) and
our (right) integration. Bottom: Slice of the aligned depth maps
(along the red line indicated above).

illustrates the error map for the tenth view. While our deci-
mation is generally lossy — except for perfectly flat regions —
discontinuities and highly slanted (near-discontinuous) sur-
faces are problematic and error prone regions for normal in-
tegration. For the Buddha statue, such surfaces are present
around the base and the lower part of the garment. It seems
that our method performs slightly better in these situations.
We believe this is due to differences between our integrator
and the integrator in [1]. In [1] all normals are weighted
equally while our method compensates for foreshortening
assigning a higher weight to normals in slanted regions, as
their real surface is bigger than it appears in screen space.

C.1.2 Inspecting the Buddha Results in LUCES

The BUDDHA figurine in the LUCES dataset shows an atyp-
ical behaviour: Lower mesh resolutions yield a better sur-
face approximation. This inverted connection between res-
olution and reconstruction quality is also present for the pre-
vious isotropic normal integration [5], ¢f. Tab. 2. A visual
inspection revealed that the normal integration places the
Buddha’s face too far in the front compared to the figurine’s
base, see Fig. 2. This is true for both pixel- and mesh-based
integration. At lower mesh resolutions, there are more pix-



| [1] | Isotropic [5] | Ours
Dataset | Ref | low  mid  high | low mid  high
BALL 0.40 0.56 0.48 0.47 0.54 0.51 0.49
BELL 0.30 0.82 0.62 0.54 0.54 0.51 0.47
BowL 0.08 0.35 0.22 0.15 0.15 0.14 0.12
BuDDHA 3.46 3.59 3.68 3.73 3.46 3.55 3.56
BUNNY 3.38 4.03 3.93 3.83 3.90 3.80 3.74
Cup 0.01 0.36 0.20 0.08 0.06 0.03 0.02
DIE 1.62 2.98 2.67 2.46 2.83 2.57 2.63
HirrPO 2.73 3.13 2.96 2.91 3.04 2.88 2.86
HOUSE 11.08 | 11.08 11.30 11.35 | 11.38 11.49 11.32
JAR 0.50 0.55 0.46 0.43 0.43 0.43 0.43
OwL 4.89 6.22 5.86 5.69 6.00 5.47 5.34
QUEEN 3.74 5.17 443 4.30 5.05 4.08 3.98
SQUIRREL 1.91 2.87 2.47 2.34 2.62 2.15 2.03
TooL 0.91 1.04 0.96 0.93 0.91 0.90 0.90

Table 2. RMSE in mm for all objects of the LUCES dataset using the perspective projection. The vertex count is given by the respective
low, mid and high settings of [5] and matched by our decimation pipeline.

Figure 2. Side profiles of the BUDDHA figurine in LUCES [7].
Left: Our decimation with thresholds 2048 (green), 64 (yellow)
and 2 (blue). Right: Pixel-based integration [4] with ground-truth
normals (red) and smoothed normals (purple). All examples were
aligned to the ground-truth surface (grey) at the base of the fig-
urine.

els per triangle which implicitly smoothens the surface nor-
mals and flattens the integrated surface. This flattening co-
incidentally reduces the constant offset to the ground-truth
surface. This hypothesis is supported by the fact that we can
recreate this behaviour in pixel-based integration by apply-
ing a Gaussian kernel to the normal map, see Fig. 2.

C.2. Controllability

In the main paper, we studied the controllability using the
LUCES [7] dataset. For completeness, we list all results in
Tab. 3. For a more extensive study of the influence of the
decimation threshold on the final mesh quality, we tested all
normal maps of the DiLiGenT-MV dataset [6] for thresh-
old values ranging from 0.25 to 512 and evaluated both
root mean square error (RMSE) and mean absolute devi-
ation (MADE) — both after the appropriate rigid-alignment
to absolve the scale ambiguity — as well as mean angular
error (MAE) and vertex count. The results are depicted in
Fig. 3. As expected, there is virtually no difference between
the results for orthographic and perspective projection. All
objects are far away from the camera, i.e. the orthographic
projection is a good approximation of the true perspective
projection. The compression ratios reflect how our algo-
rithm adapts to the complexity of the datasets: The BEAR
and Cow mostly consist of smooth featureless surfaces and
achieve higher compression ratios than the more complex
BUDDHA dataset, especially for lower thresholds.
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Figure 3. Influence of the decimation threshold on compression ratio, RMSE, MADE and MAE. All numbers are averages over the 20
views for each object. We investigate both orthographic and perspective projection. Please note the logarithmic z-axis.

D ‘ Ref Threshold
ataset
| ] 2 26 2!

BALL 0.40 0.48 0.54 0.60
BELL 0.30 0.33 0.49 0.72
BowL 0.08 0.10 0.13 0.17
BuUDDHA 3.46 3.58 3.51 3.32
BUNNY 3.38 3.67 383 4.15
Cup 0.01 0.01 0.04 0.14
DIE 1.62 1.65 2.11 3.09
HiprrPoO 2.73 2.85 2.91 3.09
HOUSE 11.08 | 11.30 11.56 11.39
JAR 0.50 0.45 0.45 0.46
OwL 4.89 5.41 5.63 5.94
QUEEN 3.74 4.02 4.41 4.98
SQUIRREL 1.91 2.07 2.37 3.00
TooL 0.91 0.98 0.98 1.04

Table 3. RMSE in mm for all of the objects in LUCES [7] with
increasing decimation threshold. The chosen thresholds should
lead to a constant reduction rate of the RMSE.



C.3. Error Maps for the Benchmark Comparisons

LUCES Dataset (1 of 3)
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Figure 4. Error maps of the LUCES dataset after rigid alignment. We show results for all three quality settings in [5] and match the
respective vertex number for our method. Pictured are the results of the perspective projection.



LUCES Dataset (2 of 3)
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Figure 5. Error maps of the LUCES dataset after rigid alignment. We show results for all three quality settings in [5] and match the
respective vertex number for our method. Pictured are the results of the perspective projection.



LUCES Dataset (3 of 3)
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Figure 6. Error maps of the LUCES dataset after rigid alignment. We show results for all three quality settings in [5] and match the
respective vertex number for our method. Pictured are the results of the perspective projection.



DiLiGenT-MV Dataset
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Figure 7. Error map for the first view in the DiLiGenT-MV dataset after rigid alignment. We show results for all three quality settings in
[5] and match the respective vertex number for our method. Pictured are the results of the orthographic projection.



C.4. Additional Datasets

Finally, we show reconstructions from all the datasets we used. Except for LUCES [7], these datasets come without ground-
truth geometry. The RMSE:s for all objects in LUCES were reported in Tab. 3 which complements Tab. 2 from the submitted
manuscript. For visual inspection, all objects can be found in Fig. 8 to Fig. 14. We also indicate the vertex count and
compression ratio to put the results into perspective.

LUCES Dataset (1 of 3)

BALL BELL BowL BUDDHA BUNNY
/)]
e
R
T
&)
]
T
29693 (96.8%) 21856 (98.3%) 17710 (98.3%) 29142 (96.7%) 16308 (97.8%)
5849 (99.4%) 4089 (99.7%) 3248 (99.7%) 5881 (99.3%) 3206 (99.6%)
/)]
68|
e
=
o
—
1199 (99.9%) 799 (99.9%) 634 (99.9%) 1175 (99.9%) 664 (99.9%)

Figure 8. Reconstruction results for the LUCES dataset [7] for decimation thresholds of 2, 64 and 2048. These reconstructions correspond
to the numbers reported in Tab. 2 of the manuscript. Any holes in the mesh surface are part of the provided foreground mask.

10



LUCES Dataset (2 of 3)
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N
83
0
=
o
—

343 (99.9%) 692 (99.9%) 631 (99.9%) 3043 (99.8%) 957 (99.9%)

Figure 9. Reconstruction results for the LUCES dataset [7] for decimation thresholds of 2, 64 and 2048. These reconstructions correspond
to the numbers reported in Tab. 2 of the main paper. Any holes in the mesh surface are part of the provided foreground mask.
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LUCES Dataset (3 of 3)
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Figure 10. Reconstruction results for the LUCES dataset [7] for decimation thresholds of 2, 64 and 2048. These reconstructions correspond
to the numbers reported in Tab. 2 of the main paper. Any holes in the mesh surface are part of the provided foreground mask.
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RGBN Dataset (1 of 2)

High-Res Low-Res
CHARD
28812 (98.4%) 20816 (98.9%) 15088 (99.2%) 10906 (99.4%)
CHARD?2
59857 (98.2%) 43442 (98.7%) 31312 (99.1%) 22710 (99.3%)
FooD
35258 (99.2%) 25215 (99.4%) 18070 (99.6%) 12965 (99.7%)
LEAVES
29163 (98.3%) 21159 (98.8%) 15387 (99.1%) 11076 (99.4%)
SHELL
21961 (99.1%) 15796 (99.3%) 11296 (99.5%) 8083 (99.7%)

Figure 11. Reconstruction results for the RGBN dataset [9] for decimation thresholds of 8, 16, 32 and 64.
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RGBN Dataset (2 of 2)

High-Res Low-Res
PINECONE3
39834 (98.1%) 28919 (98.6%) 20951 (99.0%) 15176 (99.3%)
S OLDIER
49992 (98.5%) 36122 (98.9%) 26075 (99.2%) 18788 (99.4%)

Figure 12. Reconstruction results for the RGBN dataset [9] for decimation thresholds of 8, 16, 32 and 64. Objects were rotated to the
upright position.
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PS Dataset (1 of 2)

High-Res Low-Res
14518 (91.5%) 5445 (96.8%) 1983 (98.8%) 754 (99.6%)
FROG
16492 (92.2%) 6155 (97.1%) 2275 (98.9%) 844 (99.6%)
HIPPO

A3

15497 (91.7%) 5651 (97.0%) 2086 (98.9%) 757 (99.6%)

Figure 13. Reconstruction results for the PS dataset [3] with decimation thresholds of 0.125, 1, 8 and 64. The decimation threshold
increases from left to right, i.e. mesh resolution decreases from left to right.
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PS Dataset (2 of 2)

High-Res Low-Res
LiZARD
14655 (92.0%) 5476 (97.0%) 1987 (98.9%) 742 (99.6%)
15934 (93.0%) 5994 (97.4%) 2188 (99.0%) 827 (99.6%)
SCHOLAR
64685 (89.3%) 24678 (95.9%) 9204 (98.5%) 3425 (99.4%)
TURTLE

. 2.

16850 (91.7%) 6236 (96.9%) 2286 (98.9%) 865 (99.6%)

Figure 14. Reconstruction results for the PS dataset [3] with decimation thresholds of 0.125, 1, 8 and 64. The decimation threshold
increases from left to right, i.e. mesh resolution decreases from left to right.
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D. Overview of all Datasets

In this work, we used the following photometric stereo datasets:

¢ DiLiGenT-MV [6]: https://sites.google.com/site/photometricstereodata/mv

e LUCES [7]: http://www.robertomecca.com/luces.html

* RGBN [9]: https://gfx.cs.princeton.edu/gfx/proj/rgbn/

e PS Dataset [3]: https://vision.seas.harvard.edu/gsfs/Data.html

Furthermore, we generated synthetic datasets using the following 3D models:

e David Head [1d_inc]: https://sketchfab.com/models/39a4d01bef37495cac8d8£0009728871/

¢ Football Medal 2 [Cain]: https://sketchfab.com/models/54d54534Ff11d4d23aecb945fd7ebldf4d/

* Female Head: https://www.3dscanstore.com/3d-head-models/raw-expression-bundles/
female-02-x36-expression-bundle

e Male Head: https://www.3dscanstore.com/3d-head-models/raw—expression-bundles/male—
0l-36x-expression-scan-bundle
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https://www.3dscanstore.com/3d-head-models/raw-expression-bundles/female-02-x36-expression-bundle
https://www.3dscanstore.com/3d-head-models/raw-expression-bundles/male-01-36x-expression-scan-bundle
https://www.3dscanstore.com/3d-head-models/raw-expression-bundles/male-01-36x-expression-scan-bundle
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