
Supplementary Material:
Distilling Multi-modal Large Language Models for Autonomous Driving

A. Overview
We present the supplementary material for the paper “Distilling Multi-modal Large Language Models for Autonomous Driv-
ing”. In Section B, we provide details on the surrogate tasks module of DiMA . Section C has the details on the training setup
and the procedure for generating additional text annotations for the nuScenes dataset. In Section D, we present additional
qualitative results of DiMA’s vision-based planning branch as well as visual question-answering results from the MLLM
branch. We provide an additional quantitative evaluation of DiMA in Section E. In Section F, we provide an additional set
of ablation experiments to examine the role of each surrogate task in planning performance.

B. Surrogate tasks overview
An important component of training the MLLM branch of DiMA is the surrogate tasks module. In addition to being trained
for planning and visual question answering, the MLLM is trained to perform the following surrogate tasks: masked recon-
struction, future prediction, and scene editing. We design these tasks to enrich the bird’s-eye-view, ego, agent, and map
(BEAM ) scene representations. Surrogate tasks module takes hidden token embedding of penultimate layer of the LLM
model. An illustration of the module can be seen in Figure 1. Each decoder head in surrogate module is consists of 3 Linear
layers with a ReLU activation layer. Below, we provide some additional details on the scene editing tasks well as overviews
on the other two tasks.

Figure 1. Overview of Surrogate tasks. Here hidden
token embeddings are latent representations from the
penultimate layer of LLM. These hidden token embed-
dings corresponding to bird’s-eye-view, ego, agent, and
map (BEAM ) token embeddings are used as input as
surrogate task decoder heads to perform masked recon-
struction, future prediction and scene editing.

Masked reconstruction. Inspired by masked auto encoders [4], we
formulate a masked reconstruction task of BEV token embeddings, to
enrich the visual features learned by the scene encoder. The MLLM
trained to infer masked regions based on the context provided by the
visible BEV tokens and the rest of the multi-modal input. A recon-
struction head takes the latent representations from the penultimate
layer of LLM and predicts reconstructed BEV token embeddings B̂.
This decoder head is supervised using Lrecon (refer equation 1 main
paper).
Future prediction. We formulate future prediction of BEV token
embeddings, combined with VQAs to ground the scene encoder and
MLLM model spatio-temporally, and learn robust spatio-temporal
BEAM scene representations. These spatio-temporal BEAM cues
benefits planning performance (Table 4 of main paper). A future pre-
diction head takes the latent representations from the penultimate
layer of LLM and predicts future BEV token embedding at times
t+1, t+2. We supervise these future BEV token embeddings using
Lfuture (refer equation 2 main paper). Motivated by the planning
objective of vehicle trajectory prediction over a 3-second horizon,
we predict BEV tokens 3 seconds into the future. To achieve this
3-second prediction, the input BEV tokens are duplicated and con-
catenated; the first half of the future prediction head’s output is then
interpreted as the prediction for (t+ 1) and the latter for (t+ 2).
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Before scene editing After scene editing

Added vehicle Removed vehicleAdded vehicle  
trajectory

Q:  How does the car added in the front of ego-vehicle effect the
behavior ? A: Ego vehicle should be cautious about the slow
moving vehicle and maintain safe distance in the fornt.

Before scene editing After scene editing

Q:  How does the car removed in the front of ego-vehicle effect
the behavior ? A: Ego vehicle has more room to accelerate, since
there is no vehicle in front.

Q:  How does the car added in the back of ego-vehicle effect the
behavior ? A: Ego vehicle should be cautious and maintian safe
distance in the back of ego-vehicle.

Q:  How does the car removed in the back of ego-vehicle effect
the behavior ? A: Ego vehicle speed or acceleration is not
effected.

Q:  How does the car added in the left of ego-vehicle effect the
behavior ? A: Ego vehicle cannot merge to left lane or cannot
take left turn.

Q:  How does the cars removed in the left of ego-vehicle effect
the behavior ? A: Ego vehicle has an opputunity to merge to the
left lane.

Q:  How does the car added in the right of ego-vehicle effect the
behavior ? A: Ego vehicle should be cautious and cannot merge
to right lane

Q:  How does the car removed in the right of ego-vehicle effect
the behavior ? A: Ego vehicle has an opportunity to take right
turn or merge to right lane cautiously. 

Figure 2. Examples of addition and deletion in scene editing. In the left column, a car (solid red box) is added in the premises of the
ego-vehicle (green box). In the right column, a car (dashed red box) is removed from the premises of the ego-vehicle. A corresponding
question-answer pair is created to characterize the edit.

Scene editing. We propose a novel scene editing task in which we augment scenes by removing or adding new agents.
Along with this, we construct a question-answer pair related to the edit. We show examples of this in Figure 2. For scene
addition, given the map constraints, predicted map, the ego bounding box location and the trajectories of predicted agents
obtained from perception, and prediction tasks of scene encoding (refer [6, 7], using camera meta data we project all these
to two-dimensional space as shown in 2. Using this, we identify possible locations in the premises of ego-vehicle location,
where a new object can be added and randomly choose the location for the new agent, which is of size maximum 2× of
size of ego-vehicle. Given the location for the new agent and map constraints, we create a way-point trajectory for a new
agent of category “car” or “truck”. A new agent token embedding is then created using a linear layer. This new agent token
embedding, the corresponding text prompt, and the rest of the BEAM token embeddings are passed as input to the LLM. The



hidden latent LLM features corresponding to agent token embeddings are then fed into a dedicated scene editing decoder head
that performs way-point prediction of the ego vehicle. The output way-point prediction of the ego vehicle from scene editing
head is supervised using Lscene. Lscene is ego-agent collision constraint loss with updated agents incorporating either new
added agent or removed agent in scene editing task. For ego-agent collision constraint loss refer [7]. The language prediction
head performs question-answering on the new QA pair. This task thus contributes to the existing planning constraint loss and
VQA loss of the MLLM. The QA pairs are generated according to a template in which the possible movements of the ego
vehicle are described.

C. Experimental Setup
C.1. Training details

Table 1. Comparison of L2 trajectory error and collision rate on nuScenes [2] using
standardized evaluation [10]. Models are evaluated on the general validation split as
well as a “targeted” split of challenging samples from [10]. The performance of the
DiMA model variants are in shades of purple. We summarize results by averaging
over at t = {1, 2, 3}s as well as at all time steps.

Method Using Traj L2 (m) ↓ Collision (%) ↓
Ego status 1s 2s 3s Ave1,2,3s Aveall Aveall

Full validation split
UniAD[6] ✗ 0.48 0.89 1.47 0.95 0.83 0.40
PARA-Drive[10] ✗ 0.26 0.59 1.12 0.66 0.56 0.17
TOKEN[9] ✗ 0.26 0.70 1.46 0.81 0.68 0.15
DiMA (UniAD) ✗ 0.19 0.50 1.08 0.59 0.50 0.06

Targeted validation split
UniAD[6] ✗ 0.47 1.09 1.92 1.16 0.99 0.15
PARA-Drive[10] ✗ 0.38 0.97 1.88 1.08 0.91 0.14
DiMA (UniAD) ✗ 0.30 0.82 1.63 0.92 0.77 0.06

3-point turn (zero-shot)
UniAD[6] ✗ 0.68 1.55 2.90 1.71 1.43 0.00
PARA-Drive [10] ✗ 0.50 1.38 2.76 1.55 1.29 5.33
TOKEN [9] ✗ 0.39 1.29 2.60 1.43 1.18 4.00
DiMA (UniAD) ✗ 0.28 0.94 2.16 1.13 0.90 0.00

Resume from stop
UniAD[6] ✗ 1.09 1.66 3.06 1.94 1.73 0.00
PARA-Drive ✗ 0.14 0.79 2.30 1.08 0.85 0.00
TOKEN ✗ 0.13 0.70 1.58 0.80 0.65 0.00
DiMA (UniAD) ✗ 0.38 0.83 1.49 0.90 0.84 0.00

Overtake
UniAD[6] ✗ 0.60 1.39 2.38 1.45 1.27 0.98
PARA-Drive ✗ 0.27 0.89 1.94 1.03 0.85 2.30
TOKEN ✗ 0.29 0.77 1.63 0.90 0.74 0.00
DiMA (UniAD) ✗ 0.28 0.75 1.55 0.86 0.78 0.41

We train DiMA-VAD-tiny, DiMA-VAD-
Base, and DiMA-UniAD, using training se-
tups adapted from [7] and [6]. Our train-
ing process follows a two-stage approach.
First, we pre-train the vision planner only
under the perception, prediction, and plan-
ning constraints for 60 epochs in order to
learn informative latent scene representa-
tions. Second, we perform joint training of
the vision planner and the MLLM for an
additional 30 epochs, incorporating all pro-
posed tasks and losses detailed in Section B.
In the second stage, the language model of
the MLLM is fine-tuned using LoRA [5].
Question-answer pairs from the augmented
DriveLM dataset [8] are input along with
the multi-view image sequence in the sec-
ond stage. For each input sample, we ran-
domly select one QA-pair from each cate-
gory in every iteration to send as text prompt
input to the network. This ensures diver-
sity in questions while avoiding redundant
visual inputs. For both stages, we employ
the AdamW optimizer with a cosine anneal-
ing scheduler, a weight decay of 0.01, and
an learning rate of 2 × 10−4. In all our ex-
periments we set the random masking ratio as [0.2, 0.4].

C.2. Generation of text annotations
We augment the existing text annotations of the Drive-LM [8] by generating question-answer (QA) pairs for samples in the
nuScenes dataset [2]. First, we parse the numerical annotations of each object in the scene, such as the ego-vehicle and the
surrounding objects. We denote each object as an agent and assign attributes such as the camera in which it is visible, the
name of the object, and the vehicle speed. Additionally, we use rule-based algorithms to assign brief text descriptions of the
future movement, the direction of movement relative to the ego-vehicle, the future speed, the type of interaction with the ego
vehicle, and the probability of collision with the ego-vehicle. Using this annotation along with a few in-context examples,
we prompt a Llama 3-70B model [3] to generate 5 Drive-LM-like QA pairs for each category of question. The input system
prompt can be seen in Figure 5. An example of a textual description of the numerical annotations can be seen in Figure 6.
Examples of generated QA pairs can be seen in Figure 7.

D. Additional Qualitative Results
We present extensive qualitative results of DiMA . In Section D.1, we present a comparison of planning performance of the
vision-based planner on nuScenes. In Section D.2, we provide numerous visual question-answering results on various subsets



Ego vehicle Ground-truth trajectory VAD prediction
DiMA prediction (Ours)

Figure 4. Visual comparison of the planning performance of DiMA (VAD-Tiny) with VAD-Tiny [7]. Samples are from the “targeted”
subset of the nuScenes validation split.

of the nuScenes dataset.

D.1. nuScenes planning

Figure 3. Visualization of three-point turn results. Press center buttons to
play with Adobe Reader.

We present qualitative planning results of DiMA com-
pared to that of VAD in Figure 4. We evaluate on diffi-
cult “targeted” samples from nuScenes. These are sam-
ples where the ego-vehicle is performing right and left
turns. As seen in the figure, training with DiMA ensures
safe trajectory prediction, avoiding collisions with vehi-
cles when turning around corners (see row 1, columns 1
and 4) as well as avoiding lane departures (row 1 column
2). DiMA also results in more precise turns (see row 2).

In Fig. 1 of the main paper, we show a 3-
point turn emphasizing complex maneuver, involving
a sharp left turn, backward movement, and a sec-
ond left turn, typically takes ∼1 minute to com-
plete. In this supplemental material, we include a
complete turn playable video visualization in Fig. 3
above.

D.2. Visual question-answering
We present numerous qualitative examples of planning and VQA performance of the DiMA MLLM branch. For Drive-LM
test samples that have ground-truth annotations, we compare the generated text response with the ground-truth answer in
Figure 8. We also plot the predicted future trajectory. In Figure 9 we show two scenarios in which DiMA provides incorrect
VQA results.

For a more extensive qualitative analysis, we compare the performance of DiMA -MLLM with GPT-4 [1] in Figures 10,
11, and 12. We present common reasoning questions along with the DiMA -MLLM response and the GPT-4 response. The



Table 2. Avgall(↓) L2 trajectory error on nuScenes dataset using standardized evaluation ParaDrive

Method Surrogate targeted long-tail
Masked
recon.

Future
pred.

Scene
editing 3point overtake resume

VAD-Tiny ✗ ✗ ✗ 1.37 1.83 1.75 1.32

DiMA (VAD-Tiny)

✓ ✓ ✓ 0.97 1.43 1.23 0.83
✓ ✗ ✗ 1.22 1.67 1.51 1.07
✗ ✓ ✗ 1.16 1.56 1.43 0.98
✗ ✗ ✓ 1.09 1.51 1.39 0.96

input to GPT-4 is the text prompt and a stitched image of the multi-view image set. We also show the planning performance
plotted in the image as well as in a diagrammatic form on the right side of each row. As observed in these examples, DiMA is
able to focus on objects important for navigation and planning. As can be seen in Figure 10 row 4, our model correctly
predicts the future right turn to be taken by the ego-vehicle, while GPT-4 suggests the ego-vehicle should move straight. A
similar problem is observed in Figure 12 row 4, where the prediction by GPT-4 is much more vague than that of DiMA .

E. Additional Quantitative Results
We present the performance of DiMA-UniAD performance evaluated on the nuScenes dataset using standardized evaluation
[10] in Table 1. We compare the performance of both DiMA-UniAD and UniAD[6] on the general validation split as well
as a “targeted” split of challenging samples from [10] and on long-tail scenarios. We observe consistent improvement across
all metrics, resulting in significantly reduced L2 trajectory error and collision rate. This model version also out-performs
state-of-the-art methods PARA-Drive [10] and TOKEN [9] in almost all cases.

F. Additional ablation study
We include additional ablation studies to analyze the effect of surrogate tasks across targeted and long-tail scenarios in
nuScenes in Tab. 2 of this supplementary material. Our experiments demonstrate that closer the objective of the surrogate
task is to the planning task, the more it boosts performance. For example, masked reconstruction enhances the visual repre-
sentation. We observe a stronger boost in planning by training for future prediction, which encourages temporal consistency.
The task of scene editing is most beneficial, as it encodes agent behaviors and reasoning patterns, further improving planning
performance.



QA pair generation with Llama-3-70B | System prompt

You are a system designed to generate high quality question answer pairs in the
scenario of autonomous driving, from the point of view of an ego-vehicle
viewing a 360 degree scene around you. Questions-answer pairs may be of three
types : Perception, Prediction, and Planning. Perception questions relate to
the nature of the agents/objects around the ego-vehicle. Planning questions
relate to questions about the future actions of the ego-vehicle. Prediction
questions are detailed questions about the agents/objects around the ego
vehicle. Here are some examples of each type of question.

Perception
1. Q: ’What are objects to the front left of the ego car?’

A: ’There is one truck and one car to the front left of the ego car.’
2. Q: ’Are there moving pedestrians to the front right of the ego car?’

A: ’Yes.’

Prediction
1. Q: ’Is <c1,CAM_FRONT> a traffic sign or a road barrier?’

A: ’No’
2. Q: ’What object should the ego vehicle notice first when the ego

vehicle is getting to the next possible location? .... [TRUNCATED]
A: ’Firstly, notice <c6,CAM_FRONT,1074.8,336.5>. It is a traffic sign, so

the ego vehicle should stop. Secondly, notice
<c1,CAM_FRONT,1413.3,534.2>. It is stationary, so .... [TRUNCATED]

Planning
1. Q: ’What is the probability of colliding with <c1,CAM_FRONT> after the ego

vehicle steps on the brakes?’
A: ’Low’

2. Q: ’In this scenario, what are safe actions to take for the ego vehicle?’
A: ’Brake gently to a stop, slightly offset to the right.’

For the given scene, generate five of each type of questions based on
the attributes provided of the ego vehicle and each agent surrounding the ego
vehicle. Make sure that the answer is in the format

{
’Perception’:

{’Q’:’Question’,’A’:’Answer’},
’Prediction’:

{’Q’:’Question’,’A’:’Answer’},
’Planning’:

{’Q’:’Question’,’A’:’Answer’}
}

Do not return any other text than the QA pairs in a correct python dictionary
format. Make sure the answers are as descriptive as possible. Avoid one word
answers or yes/no questions.

Figure 5. The system prompt given to Llama-3 to generate question-answer pairs.



QA pair generation with Llama-3-70B | Sample numerical annotation

"token": "f9878012c3f6412184c294c13ba4bac3",
"scene_description": "Car overtaking, parking lot, pedestrians, pedestrian
exiting car, objects on the ground",
"agent_attributes": {

"c0": {
"category": "truck",
"speed": -0.00784316331860773,
"assigned_cameras": [

"CAM_BACK_LEFT"
],
"future movement": "stopped",
"future speed": "not moving",
"direction": "towards from ego vehicle",
"interaction_with_ego_vehicle_type": "none",
"probability_of_collision_with_ego_vehicle": "low"

},
"c1": {

"category": "pedestrian",
"speed": 0.0,
"assigned_cameras": [

"CAM_FRONT",
"CAM_FRONT_LEFT"

],
"future movement": "stopped",
"future speed": "not moving",
"direction": "away from ego vehicle",
"interaction_with_ego_vehicle_type": "none",
"probability_of_collision_with_ego_vehicle": "low"

},

... [TRUNCATED] ...

"c24": {
"category": "car",
"speed": 0.0,
"assigned_cameras": [

"CAM_BACK"
],
"future movement": "stopped",
"future speed": "not moving",
"direction": "away from ego vehicle",
"interaction_with_ego_vehicle_type": "none",
"probability_of_collision_with_ego_vehicle": "low"

}

Figure 6. An example of the text-description of the numerical annotations of a scene from nuScenes. This JSON file is created using
rule-based algorithms. This is appended to the system prompt.



QA pair generation with Llama-3-70B | Generated QA pairs

Perception

{
"Q": "What are objects to the back right of the ego car?",
"A": "There is one car and one bicycle to the back right of the ego

car."
},
{

"Q": "Are there moving agents to the back right of the ego car?",
"A": "Yes, there is one moving car to the back right of the ego car."

},
... [TRUNCATED] ...

Prediction

{
"Q": "What are the future movements of the agents to the back right

of the ego car?",
"A": "The car will slightly steer to the right and the bicycle will

remain stopped."
},
{

"Q": "What are the future speeds of the agents to the back right of
the ego car?",

"A": "The car will be driving fast and the bicycle will not be
moving."

},
... [TRUNCATED] ...

Planning

{
"Q": "What is the probability of colliding with the car after the

ego vehicle steps on the brakes?",
"A": "Medium"

},
{

"Q": "What actions taken by the ego vehicle can lead to a collision
with the bicycle?",

"A": "No action taken by the ego vehicle will lead to a collision
with the bicycle."

},
... [TRUNCATED] ...

Behavior

"Q": "Predict the behavior of the ego vehicle.",
"A": "The ego vehicle is slighlty steering to the right. The ego

vehicle is moving at a moderate speed."

Figure 7. Some examples of generated QA pairs. The perception, prediction, and planning pairs are generated with Llama-3. The behavior
QA is created using the future motion of the ego vehicle.



Prompt: What actions taken by the ego vehicle can lead to a collision with <c1,CAM_BACK,1568.3,505.0>?

DiMA: There are no such actions. The ego vehicle is going to keep <c1,CAM_BACK,1568.3,505.0>. 

GT: No such action will lead to a collision

CAM FRONT LEFT CAM FRONT  CAM FRONT RIGHT

CAM BACK LEFT CAM BACK RIGHTCAM BACK 

Prompt: What is the moving status of object <c1,CAM_FRONT_LEFT,231.5,472.1>?  Please select the
correct answer from the following options:  A. Stopped. B. Going ahead. C. Turn right. D. Turn left

DiMA: S. Going ahead.

GT: B

CAM FRONT LEFT CAM FRONT  CAM FRONT RIGHT

CAM BACK LEFT CAM BACK RIGHTCAM BACK 

CAM FRONT LEFT CAM FRONT  CAM FRONT RIGHT

CAM BACK LEFT CAM BACK RIGHTCAM BACK 

Prompt: Is <c1,CAM_BACK,1088.3,497.5> a traffic sign or a road barrier?

DiMA: No.

GT: No

CAM FRONT LEFT CAM FRONT  CAM FRONT RIGHT

CAM BACK LEFT CAM BACK RIGHTCAM BACK 

Prompt: What actions could the ego vehicle take based on <c1,CAM_FRONT_RIGHT,850.0,484.2>? Why take
this action and what's the probability?

DiMA: The action is to remain stationary. The reason for this action is to follow the traffic rules.
The probability of taking this action is high.

GT: The action is to remain stationary. The reason for taking this action is to follow traffic rules.
The probability of this action is high.

Figure 8. Visualization of VQA and planning prediction by the MLLM branch of DiMA-VAD-Tiny. We plot the predicted trajectory
(orange-yellow) and show an example response of the language model branch to a question from the DriveLM test dataset [8].

CAM FRONT LEFT CAM FRONT  CAM FRONT RIGHT

CAM BACK LEFT CAM BACK RIGHTCAM BACK 

Prompt: What actions taken by the ego vehicle can lead to a collision with <c1,CAM_FRONT,714.3,503.6>?

DiMA: The ego vehicle is going straight and braking.

GT: Accelerate and go straight.

CAM FRONT LEFT CAM FRONT  CAM FRONT RIGHT

CAM BACK LEFT CAM BACK RIGHTCAM BACK 

Prompt: What actions taken by the ego vehicle can lead to a collision with
<c1,CAM_FRONT,1458.3,492.5>?

DiMA: None.

GT: Moderate right turn.

Figure 9. Visualization of failure cases of DiMA-VAD-Tiny. We plot the predicted trajectory (orange-yellow) and show an example
response of the language model branch to a question from the DriveLM test dataset [8].



CAM FRONT LEFT CAM FRONT  CAM FRONT RIGHT

CAM BACK LEFT CAM BACK RIGHTCAM BACK 

Prompt: What are the important objects in the scene?

DiMA: There are two cars and one pedestrian in the scene. The pedestrian is standing. The cars are
parked. 

GPT4: The important objects in the scene include a multi-story building, parked cars, grassy areas, and
surrounding trees.

CAM FRONT LEFT CAM FRONT  CAM FRONT RIGHT

CAM BACK LEFT CAM BACK RIGHTCAM BACK 

Prompt: What are the important objects in the scene?

DiMA: There are many traffic cones in the scene. The road is relatively empty.

GPT4: The important objects in the scene include a roadway, trees, a parking area, a food court
signage, and parts of nearby buildings.

Prompt: Predict the behavior of the ego vehicle.

DiMA: The ego vehicle is slightly steering to the left. The ego vehicle is driving with normal speed.

CAM FRONT LEFT CAM FRONT  CAM FRONT RIGHT

CAM BACK LEFT CAM BACK RIGHTCAM BACK 

GPT4: The ego-vehicle is likely moving forward along the road while navigating around obstacles, with
potential changes in direction due to the street layout.

Prompt: Predict the behavior of the ego vehicle.

DiMA: The ego vehicle is slightly steering to the right. The ego vehicle is driving fast.

CAM FRONT LEFT CAM FRONT  CAM FRONT RIGHT

CAM BACK LEFT CAM BACK RIGHTCAM BACK 

GPT4: The ego-vehicle is likely moving straight along the road while encountering light rain and
moderate visibility conditions.

Figure 10. Visualization of visual question-answering on the targeted subset of the nuScenes dataset. On the image, we plot the predicted
trajectory (orange-yellow) The red line is the ground-truth trajectory. In the diagram, the green line is the predicted trajectory.



Prompt: What are the important objects in the scene?

DiMA: There are two cars and one pedestrian in the scene. The pedestrian is moving. The cars are
parked.

CAM FRONT LEFT CAM FRONT  CAM FRONT RIGHT

CAM BACK LEFT CAM BACK RIGHTCAM BACK 

GPT4: The important objects in the scene include cars, greenery, a fire hydrant, signs, and a person
walking.

Prompt: What are the important objects in the scene?

DiMA: There are many cars and one motorcycle in the scene. The ego car is moving ahead.

CAM FRONT LEFT CAM FRONT  CAM FRONT RIGHT

CAM BACK LEFT CAM BACK RIGHTCAM BACK 

GPT4: The important objects in the scene include a modern building, pathways, trees, parked vehicles,
and street signage..

Prompt: What are the important objects in the scene?

DiMA: The pedestrian in white clothes is moving. 

CAM FRONT LEFT CAM FRONT  CAM FRONT RIGHT

CAM BACK LEFT CAM BACK RIGHTCAM BACK 

GPT4: The important objects in the scene include modern buildings, pedestrians, traffic signage, and a
vehicle on the road.

Prompt: What are the important objects in the scene?

DiMA: There is a traffic cone, a car, and two barriers in the scene. The traffic cone is to the left of
the car. The car is moving. The barriers are behind the car. There is a truck to the back left of the
car. The truck is moving.

CAM FRONT LEFT CAM FRONT  CAM FRONT RIGHT

CAM BACK LEFT CAM BACK RIGHTCAM BACK 

GPT4: The important objects in the scene include traffic lights, trucks, cars, construction barriers,
and greenery adjacent to the roadway.

Figure 11. More visualization of visual question-answering on the targeted subset of the nuScenes dataset. On the image, we plot the
predicted trajectory (orange-yellow) The red line is the ground-truth trajectory. In the diagram, the green line is the predicted trajectory.



Prompt: What are the important objects in the scene?

DiMA: There are two cars, one truck, and one pedestrian in the scene.

GPT4: The important objects in the scene include vehicles, traffic signals, road markings, and the
Raymond L. Flynn Marine Park sign.

CAM FRONT LEFT CAM FRONT  CAM FRONT RIGHT

CAM BACK LEFT CAM BACK RIGHTCAM BACK 

Prompt: What are the important objects in the scene?

DiMA: There are two pedestrians moving.

GPT4: The important objects in the scene include cars, street signs, buildings, a river, and
pedestrians.

CAM FRONT LEFT CAM FRONT  CAM FRONT RIGHT

CAM BACK LEFT CAM BACK RIGHTCAM BACK 

Prompt: What are the important objects in the scene?

DiMA: There are many cars, two pedestrians, and one truck in the scene. The cars are moving. The
pedestrians are standing. The truck is moving. The traffic light is green.

GPT4: The important objects in the scene include vehicles, traffic lights, road signs, and
architectural structures, set in a wet urban environment.

CAM FRONT LEFT CAM FRONT  CAM FRONT RIGHT

CAM BACK LEFT CAM BACK RIGHTCAM BACK 

Prompt: In this scenario, what are safe actions to take for the ego vehicle?

DiMA: Turn left.

GPT4: The ego vehicle should proceed cautiously, ensuring to yield to any approaching traffic while
navigating the area.

CAM FRONT LEFT CAM FRONT  CAM FRONT RIGHT

CAM BACK LEFT CAM BACK RIGHTCAM BACK 

Figure 12. More visualization of visual question-answering on the targeted subset of the nuScenes dataset. On the image, we plot the
predicted trajectory (orange-yellow) The red line is the ground-truth trajectory. In the diagram, the green line is the predicted trajectory.
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