
RADIOv2.5: Improved Baselines for Agglomerative Vision Foundation Models

Supplementary Material

Variant Zero Shot kNN ADE20k Depth SNorm MultiView SPairs
Stage 1

No SAM 79.38 83.17 50.27 82.54 61.03 58.12 51.97
SAM 79.37 83.29 51.14 82.60 61.88 58.91 52.49

Stage 2
No SAM 80.43 83.83 50.24 83.29 61.43 58.98 54.72
SAM 80.47 83.92 51.36 83.17 62.80 61.36 54.66

Table 6. Ablation on whether to include SAM in the teacher set for the first two stages of multi-stage training.

Zero Shot kNN ADE20k Depth SNorm MultiView SPairs SAM
Stage 1

1 79.37 83.29 51.14 82.60 61.88 58.91 52.49 71.51
2 78.70 83.00 50.88 82.32 60.78 58.49 52.32 71.29
4 77.93 82.61 51.09 82.89 61.26 58.47 52.54 71.02

Stage 2
1 80.47 83.92 51.36 83.17 62.80 61.36 54.66 73.62
4 78.82 83.41 51.34 82.99 61.58 59.80 55.96 73.03

Table 7. Ablation on number of partitions for the first two stages of multi-stage training.

A. Additional Experimental Findings

A.1. Is SAM a good teacher?

SAM [22] has been a controversial choice in the recent agglomerative models literature. AM-RADIO [35] struggled to prove
that its inclusion improved any metrics. Theia [38] specifically ablated whether to include SAM, and found that it degraded
their metrics. UNIC [37] opted as well not to include SAM. Based on the findings with PHI-S [34], and our confirmation
of imbalance in section 4.4, it seems that a major problem with SAM may just have been that interpolating its features is
a “really bad thing”, and also that the distribution was extremely unbalanced; something that PHI-S corrects. We chose to
re-run the study of whether SAM is a good teacher now that we have a new bag of tricks. In particular, we run the first two
stages of multi-stage training, we use the mosaic augmentation for SAM in both of these stages, and we apply PHI-S to all
teachers. We show the results in table 6 where it is clear that including SAM has negligible (but positive) impact on our
classification benchmarks, and strong positive effects on dense tasks such as semantic segmentation and 3D probing. SAM’s
inclusion also enables novel opportunities such as those found in VideoSAM [17] where they employ AM-RADIO’s SAM
adaptor and backbone simultaneously for video segmentation.

Finding 6. All teachers are beneficial, including SAM, despite recent trends. It also has broad downstream applicability,
granting our student the same abilities.

A.2. Partitioning

In PHI-S [34], the authors opted to put teachers in their own partitions, which reduces the teacher overhead (as the per-teacher
batch size is reduced). However, the paper does not ablate whether this choice came with model quality consequences. In
Table 7 we study the number of partitions for the first two stages of training. We find that fewer partitions is strongly better
for summarization tasks, and less clear for dense tasks.

Finding 7. Minimizing the number of partitions seems to be beneficial, assuming you can afford the teacher overhead.
Under compute constraints, partitioning is an effective strategy to reduce the overhead.

A.3. SigLIP Teacher

Building on previous work ([42], [23]), we replace OpenAI-CLIP [32] with SigLIP [49], defining this as our configuration C.
Our choice is validated by the significant improvements observed in VLM tasks, as shown in Table 1.

Layers Aggre- Head ADE20k Depth Surf Overall
gation Normals

31 N/A Linear 52.47 82.9 57.0 61.215
7-15-23-31 Sparse Linear 52.99 82.5 59.6 62.03
(0-9)-(10-19)-(20-30)-31 Dense Linear 52.96 82.7 59.5 62.03
15-31 Sparse Linear 52.90 83.1 59.6 62.12
(0-15)-(16-30)-31 Dense DPT 54.27 85.4 60.7 63.65
15-31 Sparse DPT 54.58 84.6 61.0 63.70
7-15-23-31 Sparse DPT 55.19 85.9 61.6 64.46
(0-9)-(10-19)-(20-30)-31 Dense DPT 54.28 85.5 62.3 64.08
3-7-11-15-19-23-27-31 Sparse DPT 54.42 86.7 62.8 64.58

TextVQA ChartQA DocVQA InfoVQA OCRBench

Last N/A 63.6 23.4 47.0 33.8 42.0
7-15-23-31 Sparse 63.2 24.1 47.2 34.3 40.3
(0-9)-(10-19)-(20-30)-31 Dense 63.5 23.1 47.0 33.5 40.2

Table 8. Study on the effect of RADIOv2.5-H feature selection. For “dense” aggregation, the numbers in brackets indicate the range of
layers from which the average is calculated. Top: Semantic segmentation, depth estimation, surface normals estimation. Bottom: VILA
benchmarks. Pixel-level tasks exhibit a clear preference for more layers and non-linear heads, while VLM tasks seem mostly neutral to
this choice.

A.4. Feature Selection

For each image, our foundation model outputs a summary vector along with patch tokens at a granularity of one per 162 input
pixel block. For image-level tasks such as classification, search, or curation, the summary vector provides a rich embedding.
For dense tasks, such as segmentation or 3D understanding, the patch tokens are a natural choice. However, as demonstrated
in previous work, incorporating additional intermediate activations further enhances performance. For example, [12] uses
a Dense Prediction Transformer (DPT) head [33] for 3D reasoning, while [48] averages multiple ranges of intermediate
activations to feed into an LLM for VLMs.

In this section, we investigate various feature selection methods and present the results in Table 8. We experiment with
sparse feature selection (selecting activations from individual layers throughout the model) and dense feature selection (ag-
gregating information across all layers by averaging groups of layer activations). We examine the impact of feature selection
in conjunction with different downstream heads (linear or DPT probe).

Our findings show that a linear probe alone is insufficient to leverage additional information from intermediate layer
activations. However, when a DPT head is employed, it effectively incorporates this additional information. We note,
however, that it is challenging to disentangle the benefits provided by additional feature information, and those of the extra
learnable parameters of the DPT head. Unlike [48], we do not observe a positive impact of using dense features in VLMs.

Finding 8. Intermediate layer activations greatly benefit downstream tasks if a non-linear transformation is employed.

B. VLM Benchmarks

B.1. More Vision Encoder Comparisons

In Table 9, we report benchmark results for OpenAI-CLIP-336, AM-RADIO-H, SigLIP-400m, and RADIOv2.5-H. The same
Qwen2-7B-Instruct LLM, training data, and hyperparameters are used across all configurations. RADIOv2.5-H is utilized in
conjunction with Token Merging and configured to produce either 196 tokens per image (matching SigLIP) or 512 tokens per
image (to demonstrate scaling capabilities). The results show a significant improvement when transitioning to RADIOv2.5-
H, even with the same token count as the SigLIP baseline. Furthermore, additional benefits are observed when scaling up the
number of vision tokens.

B.2. Scaling up to More Data

In Table 10, we report benchmark results obtained using an improved SFT data mixture, which includes data from
ShareGPT4v, LLaVA Instruct, Cambrian, VFLAN, and the training sets of some benchmarks, for a total of 9.8M samples.

Vision Encoder R
es

ol
ut

io
n

To
ke

ns
/im

Te
xt

V
Q

A

C
ha

rt
Q

A

D
oc

V
Q

A

In
fo

V
Q

A

O
C

R
B

en
ch

G
Q

A

PO
PE

M
M

E

SE
E

D
(I

)

A
I2

D

Average

OpenAI-CLIP [32] 3362 144 63.8 27.5 48.8 33.0 414 63.0 86.7 1646.9 66.7 67.1 58.03
AM-RADIO-H [35] 5122 256 55.9 15.7 35.2 30.6 316 60.2 85.3 1516.5 71.8 63.1 52.52
SigLIP-SO400M [49] 3842 196 67.6 33.0 57.1 36.0 458 63.0 85.7 1605.2 74.2 68.6 61.13
RADIOv2.5-H (ours) 7682 196 70.8 33.9 59.5 37.0 482 63.9 86.9 1613.5 75.1 66.7 62.27
RADIOv2.5-H (ours) 7682 512 70.2 37.3 64.2 37.6 523 64.5 87.3 1587.6 75.4 67.5 63.57

Table 9. VILA benchmark results for various vision encoders. We used Qwen2-7B-Instruct as LLM and ShareGPT4v[6] and
VFLAN[45] data. From left to right we report: image resolution, numbers of tokens per image, TextVQA (with OCR hints) validation
accuracy, ChartQA overall, DocVQA validation accuracy, InfoVQA validation accuracy, OCRBench accuracy, GQA (TestDev) accuracy,
POPE F1 score, MME perception score, SEED (Image) accuracy, AI2D accuracy, average (calculated after dividing MME score by 20 and
OCR score by 10).

Vision Encoder TextVQA ChartQA DocVQA InfoVQA OCRBench GQA POPE MME SEED(I) AI2D Average

SigLIP-SO400M [49] 69.7 67.2 63.7 40.9 588 62.4 86.9 1648.5 72.0 75.0 67.90
RADIOv2.5-H (ours) 71.5 71.9 73.6 45.6 667 62.7 87.5 1664.1 77.39 74.8 71.49

Table 10. VILA benchmark results for SigLIP and RADIOv2.5-H. We used Qwen2-7B-Instruct [44] as LLM, with an improved data
mixture of public datasets. From left to right we report: TextVQA (with OCR hints) validation accuracy, ChartQA overall, DocVQA
validation accuracy, InfoVQA validation accuracy, OCRBench accuracy, GQA (TestDev) accuracy, POPE F1 score, MME perception
score, SEED (Image) accuracy, AI2D accuracy, average (calculated after dividing MME score by 20 and OCR score by 10).

RADIOv2.5-H is used in conjunction with Token Merging and is configured to produce 512 tokens per image. RADIOv2.5-H
outperforms the SigLIP baseline on all benchmarks, except for AI2D, where it achieves a tie with SigLIP.

B.3. Effect of the Compression Method

Vision Encoder Compression To
ke

ns
/im

Te
xt

V
Q

A

C
ha

rt
Q

A

D
oc

V
Q

A

In
fo

V
Q

A

O
C

R
B

en
ch

G
Q

A

PO
PE

M
M

E

SE
E

D
(I

)

A
I2

D

Average

SigLIP SO400M [49] 2× 2 Unshuffle 196 63.4 23.1 41.4 30.1 339 63.8 85.4 1518.4 70.9 63.6 55.15
SigLIP SO400M [49] ToMe r=533 196 62.9 21.2 41.8 30.1 326 64.2 85.8 1537.5 71.7 63.7 55.09

RADIOv2.5-H (ours) 2× 2 Unshuffle 576 66.4 25.0 53.3 32.5 402 64.8 86.5 1434.0 73.4 63.9 57.77
RADIOv2.5-H (ours) ToMe r=2048 256 69.7 30.4 52.3 36.2 429 63.8 86.8 1572.4 74.6 65.1 60.04
RADIOv2.5-H (ours) ToMe r=3584 512 68.9 31.3 53.9 37.0 446 63.0 87.6 1537.7 73.9 66.0 60.31

Table 11. VILA benchmark results for various vision encoders and compression methods. We used MN-Minitron-8B as LLM and
ShareGPT4v[6] and VFLAN[45] data. From left to right we report: number of vision tokens per image, TextVQA (with OCR hints)
validation accuracy, ChartQA overall, DocVQA validation accuracy, InfoVQA validation accuracy, OCRBench accuracy, GQA (TestDev)
accuracy, POPE F1 score, MME perception score, SEED (Image) accuracy, AI2D accuracy, average (calculated after dividing MME score
by 20 and OCR score by 10).

In Table 11, we report benchmark results for SigLIP-400m and RADIOv2.5-H using different token compression meth-
ods. The same MN-Minitron-8B LLM, training data, and hyperparameters are used across all configurations. The results
show no improvement when applying Token Merging to SigLIP. RADIOv2.5-H, on the other hand, demonstrates significant
improvement with Token Merging, and increasing the token count from 256 to 512 provides a modest additional gain.

B.4. Block-wise vs Output Token Merging

In this section we evaluate which works better: merging tokens incrementally in each ViT block (using “keys” as criteria as
in the original ToMe [4] formulation), or merging tokens once at the output of the ViT. Results are shown in Table 12 and
indicate that in our setup, one-shot merging at the output yields improved results.

Token Merging R
es

ol
ut

io
n

To
ke

ns
/im

Te
xt

V
Q

A

C
ha

rt
Q

A

D
oc

V
Q

A

In
fo

V
Q

A

O
C

R
B

en
ch

G
Q

A

PO
PE

M
M

E

SE
E

D
(I

)

M
M

M
U

A
I2

D

Av
er

ag
e

Block-wise (r =∼ 65) 7682 196 65.2 61.3 52.4 29.3 469 63.4 87.7 1539.4 73.9 42.8 79.5 61.76
Output (r = 2108) 7682 196 68.8 61.6 54.2 30.8 498 63.8 87.3 1562.3 74.1 44.1 82.5 63.19

Table 12. Comparison of block-wise vs output token merging. We use a RADIOv2.5-H vision encoder. “Block-wise” token merging: we
merge tokens in each successive ViT block, using keys as criteria. We assign 50% of tokens as target tokens and set r = 65 for the first
31 blocks and r = 93 for the last block, totaling 2108 merged tokens and bringing the final number of tokens to 196. “Output” token
merging: we only merge the ViT output tokens, using token values as criteria. We partition source/targets tokens in a 6× 6 strided pattern
and set r=2108.

B.5. High-Resolution Inference using Tiling

Vision Encoder Resolution Compression To
ke

ns
/im

Te
xt

V
Q

A

C
ha

rt
Q

A

D
oc

V
Q

A

In
fo

V
Q

A

O
C

R
B

en
ch

G
Q

A

PO
PE

M
M

E

SE
E

D
(I

)

A
I2

D

Average

SigLIP SO400M [49] + Tiling Up to 13× 3842 2× 2 Unshuffle ∼ 1928 66.5 64.6 74.4 40.1 521 64.5 88.0 1536.1 74.4 79.3 68.07
RADIOv2.5-H (ours) 7682 ToMe r=2108 196 68.8 61.4 61.9 36.7 498 63.8 88.4 1562.6 74.1 71.9 65.49
RADIOv2.5-H (ours) + Tiling Up to 7× 7682 ToMe r=2108 ∼ 1233 73.2 63.5 73.1 46.5 545 64.5 87.9 1611.6 75.3 82.4 70.15

Table 13. VILA benchmark results using tiling to emulate high-resolution inference. We used MN-Minitron-8B as LLM and the data
mixture from LLaVA1.6. From left to right we report: number of vision tokens per image (calculated across all benchmarks), TextVQA
(with OCR hints) validation accuracy, ChartQA overall, DocVQA validation accuracy, InfoVQA validation accuracy, OCRBench accuracy,
GQA (TestDev) accuracy, POPE F1 score, MME perception score, SEED (Image) accuracy, AI2D (No Mask) accuracy, average (calculated
after dividing MME score by 20 and OCR score by 10).

In Table 13, we emulate high-resolution inference using tiling [7]. While we acknowledge that there is no strict equivalence
in the number of pixels (SigLIP processes an average of 1.8M pixels per sample, whereas RADIOv2.5-H processes an average
of 3.9M pixels) or in the number of generated tokens (SigLIP outputs an average of 2,410 tokens per sample, compared to
1,313 tokens for RADIOv2.5), we observe slightly improved accuracy with RADIOv2.5 despite producing a significantly
smaller number of output tokens.

C. Semantic Segmentation

Model Params ADE20k Pascal VOC
512 768 1024 512 768 1024

RADIOv2.5-B (ours) 98M 48.94 50.48 51.16 84.35 85.47 85.33

AM-RADIO-L [35]* 320M 50.03 37.99 35.63 83.76 68.85 63.86
+ multi-res 320M 51.54 51.74 52.84 85.51 86.84 87.21
RADIOv2.5-L (ours) 320M 51.47 51.90 52.95 85.49 86.96 87.03

AM-RADIO-H [35]* 553M 51.34 35.78 32.99 84.71 64.54 59.15
RADIOv2.5-H (ours) 553M 51.58 52.45 53.91 85.97 87.54 87.69

DINOv2-g-reg 1.1B 48.79 48.37 50.71 82.72 83.95 84.25

Table 14. Semantic segmentation mIoU for ADE20k and Pascal VOC across different models and resolutions: 512× 512, 768× 768, and
1024 × 1024. Note: For DINOv2, we use the nearest larger multiple of its patch size (14). We apply a linear probe on top of the frozen
features from the vision encoder. The mIoU of RADIOv2.5-B exceeds that of DINOv2-g-reg, despite being only one-tenth the size. *Our
reproduction. Mode switching in AM-RADIO is also evident when resolution exceeds 512, as the mIoU sharply drops.

In Table 14, we report Semantic Segmentation mIoU at different resolutions on ADE20k [50] and VOC [14]. We observe

that RADIOv2.5 favorably scales to higher resolutions, while the accuracy of AM-RADIO falls above a resolution of 512×
512.

D. Additional Benchmarks
Following MLoRE [47] we report metrics on NYUDv2 and PASCAL Context for our model, along with the other agglomer-
ative models (Theia [38] and UNIC [37]), as well as DINOv2 [9] as it’s the core perception teacher for these types of tasks.
Previously to this study, MLoRE was the state-of-the-art for producing a multi-task model for these metrics. We keep the
backbone model frozen, and use MLoRE’s “conv” head for each task. The conv head is defined as follows:

Conv-3x3 → BatchNorm → GeLU → Conv-1x1 (6)

At the largest scale, RADIOv2.5-H is extremely competitive with DINOv2-g at half the parameters. At the ViT-B and
ViT-L scale, RADIOv2.5 is the closest to DINOv2 of the same size of any of the current agglomerative models. We train
with a learning rate of 1e− 3, and use a weight of 1 for all tasks. We purposefully don’t tune any hyperparameters.

Model Backbone
SemSeg
mIoU ↑

Depth
RMSE ↓

Normal
mErr ↓

Boundary
Loss ↓

MLoRE Custom 55.96 0.5076 18.33 -
DINOv2 ViT-B/16 60.64 0.4816 18.19 0.1268

Theia ViT-B/16 38.90 0.6377 24.11 0.1298
UNIC ViT-B/16 42.21 0.6172 22.78 0.1285

RADIOv2.5 ViT-B/16 57.19 0.4980 20.04 0.1263
DINOv2 ViT-L/14 62.94 0.4406 17.63 0.1266

UNIC ViT-L/14 58.56 0.4916 19.34 0.1274
RADIOv2.5 ViT-L/16 61.42 0.4577 18.57 0.1259
AM-RADIO ViT-H/16 62.76 0.4339 18.43 0.1266
RADIOv2.5 ViT-H/16 63.82 0.4353 17.67 0.1256

DINOv2 ViT-g/14 63.89 0.4252 17.20 0.1262

Table 15. Multi-task dense results on the NYUDv2 dataset. Note that we report the “Boundary Loss” and not the osdF metric due to the
latter having a dependency on Matlab to compute.

Model Backbone
SemSeg
mIoU ↑

Parsing
mIoU ↑

Saliency
maxF ↑

Normal
mErr ↓

Boundary
Loss ↓

MLoRE Custom 81.41 70.52 84.90 13.51 -
DINOv2 ViT-B/16 81.68 73.24 77.54 17.44 0.0619

Theia ViT-B/16 69.84 60.67 80.63 16.94 0.0623
UNIC ViT-B/16 75.90 62.85 81.84 15.78 0.0620

RADIOv2.5 ViT-B/16 81.75 71.49 81.26 16.10 0.0618
DINOv2 ViT-L/14 81.97 74.51 77.22 17.77 0.0620

UNIC ViT-L/14 81.82 72.24 79.21 17.35 0.0621
RADIOv2.5 ViT-L/16 82.87 74.32 81.65 16.15 0.0617
AM-RADIO ViT-H/16 82.78 74.42 78.48 17.53 0.0619
RADIOv2.5 ViT-H/16 83.43 75.75 81.19 16.16 0.0617

DINOv2 ViT-g/14 82.47 75.56 76.93 17.59 0.0619

Table 16. Multi-task dense results on the PASCAL Context dataset. Note that we report the “Boundary Loss” and not the osdF metric due
to the latter having a dependency on Matlab to compute. We also don’t bold a cell in a model size group if a smaller model has even higher
quality for a given benchmark.

E. Hyperparameters
In Table 17, we report our RADIOv2.5 training parameters.

Parameter Value
RADIOv2.5-L RADIOv2.5-H

Backbone ViT-L ViT-H
Learning Rate 1e−3

Weight Decay 2e−2

Teachers DFN CLIP
SigLIP 400m

DINOv2-g-reg
SAM-H

Feature Normalization PHI-S
Dataset DataComp-1B
Feature Distillation Loss MSE
Summary Loss Cosine
Backbone pre-training ImageNet-1k

Table 17. RADIOv2.5 Training Hyperparameters

F. A Measure of Scale Equivariance
We define a measure of scale equivariance σ2

scale: given an array of feature tensors {Fi} with shapes (Hi,Wi, C):
1. Let Fmin denote the tensor with the smallest spatial dimensions (Hmin,Wmin, C).
2. Compute the per-channel mean and variance of Fmin:

µc =
1

HminWmin

Hmin∑
h=1

Wmin∑
w=1

Fmin(h,w, c) (7)

σ2
c =

1

HminWmin

Hmin∑
h=1

Wmin∑
w=1

(Fmin(h,w, c)− µc)
2 (8)

3. Normalize each tensor Fi using µc and σc:

F̂i(h,w, c) =
Fi(h,w, c)− µc

σc
(9)

4. Bilinearly interpolate each normalized tensor F̂i down to (Hmin,Wmin, C), resulting in tensors {F̃i}.
5. Stack all resized tensors {F̃i} along a new dimension and compute variance along this new dimension:

σ2(h,w, c) = Var({F̃i(h,w, c)}) (10)

6. Finally, compute the average variance over the spatial dimensions:

σ2
scale =

1

HminWmin

Hmin∑
h=1

Wmin∑
w=1

σ2(h,w, c) (11)

F.1. Scale Variance Implementation

1

2 def scale_variance(tensors: List, scale_up: bool):
3 """Compute feature variance across scales.
4

5 Steps:
6 * Per-channel standardization using the stats (mean/std)
7 of largest features (if scale_up) or smallest features (if scale_down)

8 * Interpolation to the size of the largest features (if scale_up) or
9 smallest features (if scale_down).

10 * Stack along a new dimension.
11 * Compute variance along the new dimension.
12 * Average across batch and spatial dimensions.
13 """
14

15 if scale_up:
16 target_tensor = max(tensors, key=lambda x: x.numel())
17 # Find the largest spatial dimensions
18 target_H = max(tensor.shape[1] for tensor in tensors)
19 target_W = max(tensor.shape[2] for tensor in tensors)
20 else:
21 target_tensor = min(tensors, key=lambda x: x.numel())
22 # Find the smallest spatial dimensions
23 target_H = min(tensor.shape[1] for tensor in tensors)
24 target_W = min(tensor.shape[2] for tensor in tensors)
25

26 # Compute mean and std along spatial dimensions (H, W) for each channel
27 mean = target_tensor.mean(dim=(1, 2), keepdim=True)
28 std = target_tensor.std(dim=(1, 2), keepdim=True)
29

30 # Normalize each tensor and resize to the largest spatial dimensions
31 normalized_tensors = []
32 for tensor in tensors:
33 # Mean-center and normalize
34 normalized_tensor = (tensor - mean) / (std + 1e-8) # Adding a small epsilon to

avoid division by zero
35

36 # Resize to (B, max_H, max_W, C)
37 resized_tensor = F.interpolate(
38 normalized_tensor.permute(0, 3, 1, 2),
39 size=(target_H, target_W),
40 mode=’bilinear’,
41 align_corners=False
42).permute(0, 2, 3, 1)
43

44 normalized_tensors.append(resized_tensor)
45

46 stacked_tensors = torch.stack(normalized_tensors) # Shape: (num_tensors, B, max_H,
max_W, C)

47

48 # Compute variance along the first dimension (num_tensors)
49 variance_tensor = torch.var(stacked_tensors, dim=0)
50

51 return variance_tensor.mean().item()

G. Mode-Switch PCA Visualizations

Figure 9 shows more visualization of the RADIO feature changes incurred by resolution increases.

H. Visualizations of Native vs Emulated High-Resolution Inference

Figure 10 shows visualizations of output features for emulated high-resolution inference through tiling, and for native high-
resolution inference using RADIOv2.5.

Figure 9. Visualizations of model features exhibiting the mode switch issue. We use PCA to project patch tokens into a 3D-space repre-
senting RGB colors. From left to right: input image, DINOv2, RADIO (baseline model) at 256x256, 384x384, 768x768, 1024x1024, and
SAM. The visualizations illustrate how our baseline RADIO switches from producing DINO-like features at low resolution to producing
SAM-like features at high resolution.

Sink Layout SigLIP RADIOv2.5-H
Values Keys Values

4× 4 0.56 0.54 0.50
6× 6 0.52 0.55 0.48
8× 8 0.56 0.59 0.53

Table 18. Reconstruction error (normalized MSE) after token merging/unmerging, using as criteria the ”keys” (we use the attention keys) or
”values” (we use the patch token values). The “Sink Layout” column indicates the strided arrangements for the merge sinks. RADIOv2.5-H
exhibits a systematically lower error than SigLIP.

I. Token Merging
I.1. Ablation Study on ToMe Parameters

I.2. More Token Merging Visualizations

Figure 11 shows more visualization of the ToME compression/decompression. Each input image yields 27x27=729 tokens,
which are then compressed to 9 tokens using ToME.

J. Mosaic Visualizations
Figures 12 and 13 show visualizations of mosaic augmentations under 2× 2 and 4× 4 arrangements.

Figure 10. Visualization of image upscaling with tiling and SigLIP

Figure 11. ToMe visualizations

Figure 12. Mosaic visualization in a 4× 4 arrangement

Figure 13. Mosaic visualization in a 2× 2 arrangement

K. PHI Standardization (PHI-S)
K.1. Overview

PHI Standardization [34] is a method of statistical standardization that additionally prevents distortion across the channels.
It is useful when you have a multidimensional distribution where all dimensions have the same units (e.g. no mixture of
distance and time features). In the case of our feature matching paradigm, where all of the features we’re matching are latent,
this is exactly the situation we’re in. In this section of the appendix, we review some of the key results of [34] in order to
build an intuition of what’s happening, and also why we care. In figure 14, we show the activation distributions of DFN CLIP,
SAM, DINOv2, and SigLIP.
The key takeaways are:
• Every model’s distributions are roughly gaussian.
• Different channels for a particular model have different centers.
• Different models have very different variances: SAM’s is 29.91, and DFN CLIP’s is 8.18× 10−4.
• If one doesn’t control for these distribution differences, then the learning process biases toward the high-variance targets.
• Different normalization techniques impose tradeoffs, particularly w.r.t. distortion.
• Distortion is a problem because it forces the student to apply more weight to the low-variance dimensions of the teacher

distribution, and less weight to the high-variance dimensions. Effectively the opposite of what’s desired.

Figure 14. Teacher activation histograms. We show the global histogram, as well as the histograms for the channels associated with the
minimum mean, maximum mean, minimum variance, and maximum variance. While all being roughly normal, they have very different
centers and scales.

K.2. Normalization

Standardization is a standard statistical technique, where, given a multivariate distribution XC where C is the number of
dimensions, then

X̂i =
Xi − µi

σi
(12)

where µi and σi are the respective mean and standard deviation of dimension i ∈ C. It treats each dimension indepen-
dently, which has the effect of scaling each dimension differently. The result of this method is that Var

[
X̂i

]
= 1 ∀i ∈ C,

and thus, at least at the start of the learning process, the expected mean-squared-error (MSE) of any channel is the same, and
this is also true across the set of teachers.

PHI Standardization is the proposed technique defined as

ϕ =

√√√√ 1

C

C∑
i

λi (13)

Λ = diag (λ1, ..., λC) (14)
Σ [X] = UΛU⊺ (15)

X̃ = ϕ−1HU⊺X (16)

Teacher ϕ2 MSE F[X]
Baseline PHI-S Baseline PHI-S

DFN CLIP 5.831E-4 5.100E-4 2.418E-4 1.143 2.411
OpenAI CLIP 0.820 0.570 0.525 1.438 1.563
DINOv2-g 1.729 0.222 0.206 7.799 8.377
SAM 27.263 3.719 5.313 7.331 5.132

Geometric Mean Baseline PHI-S
3.114 3.568

Table 19. Fidelity results for each teacher, comparing between baseline and PHI-S. Higher values are better.

where H ∈ RC×C is the normalized Hadamard matrix, Σ [X] is the covariance matrix of X, and U and λ1, ..., λC are
the orthogonal projection and eigenvalues of the diagonalization of Σ [X] respectively. Similar to regular standardization,
Var

[
X̃i

]
= 1 ∀i ∈ C. The key difference with this technique is that HU⊺ is orthogonal, and thus the only thing that affects

the scale of the distribution is ϕ, which is applied identically to every dimension. This means that there is no inter-dimension
distortion of the data, only a rotation and a uniform scale.

K.3. Distortion

The key point that [34] makes is that the distortion of the teacher distribution is important. It follows this construction:
If W,µ is the linear transform that is applied to the teacher distribution, y are the teacher features targets (pre-

normalization), and x are the student approximation of y, then

y = W−1 (x+ ϵ) + µ (17)

= W−1x+W−1ϵ+ µ (18)

where ϵ is the approximation error. This is to say that the errors are distorted along the inverse transformation of the
normalization procedure. So we get

Ŵ = diag
(

1

σ1
, ...,

1

σC

)
(19)

Ŵ−1 = diag (σ1, ..., σC) (20)

for regular standardization, and

W̃ = ϕ−1HU⊺ (21)

W̃−1 = ϕUH⊺ (22)

for PHI standardization, which, in words, shows that the estimation error will be proportional to the inverse of the normal-
ization. For regular standardization, since the normalization is per-dimension, it means that errors that occur on the channels
that had the highest variance pre-standardization will be amplified, and vice versa for the small variance channels. An alter-
native interpretation is that the student model spends an equal amount of energy learning each channel, and thus spends too
much energy optimizing low-variance dimensions at the expense of the high-variance ones, resulting in sub-optimal approxi-
mation error. In practice, ϵ need not have uniform variance across dimensions, meaning that the student model can counteract
the effect of the distortion, so in figure 15 we visualize the approximation error histograms for multiple methods (including
those not mentioned in this appendix). We observe that PHI-S has the tightest control both intra and inter model compared
to the other methods, owing to its lack of channel distortion. Empirically, we found that PHI-S resulted in the highest mean
fidelity across the teacher set, compared to other normalization methods.

We also measure fidelity within the scope of this paper, with a quick review of the formulation:

F [X] =

∑C
k Var [t(X)]∑C

k Var [f(X)− t(X)]
=

ϕ2
i

MSE(f(X), t(X))
(23)

with f(X) being the student feature distribution, and t(X) being the teacher distribution. This function represents the ratio
of the target distribution variance to the student’s estimation error variance. A value of ≤ 1 means random sampling from
the teacher distribution would be better, and ∞ would be perfect matching. We show the results of this in table 19, where
it is apparent that the baseline allocates too much energy to matching SAM due it its disproportionately large distribution
variance, consistent with [34]. The errors relative to the variance are overall smaller when applying PHI-S. We refer the
reader to the original paper for the more thorough analysis and proofs of these normalization methods, along with others such
as whitening.

Baseline MSE

Standardize

Global Stdze

PHI-S

PCA-W

ZCA

HCA

Figure 15. Loss distributions for various normalization methods. The x-axis range is based on the minimum and maximum losses seen for
each method over the course of 1,000 samples after training for 100k iterations. The “Largest Max Loss Channel” shows the distribution
for the channel that had the highest loss value. It helps us understand how vulnerable our learning process is to outliers. The “Global”
curve shows the distribution by combining all of the channels.

