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6. Hyperparameters & Initialization
We initialize each convex shape using the COLMAP points as cen-
ters and uniformly distribute new points around them with the Fi-
bonacci sphere algorithm to ensure an even distribution. The ini-
tial sphere radius is set to 1.2 times the mean distance to the three
nearest neighbors in the point cloud. This adaptive initialization
ensures that dense 3D regions contain many small convex shapes,
while sparser regions are represented by larger convexes. The ini-
tial values for the smoothness parameter δ and sharpness param-
eter σ are set to 0.1 and 9.5e−4, respectively. These values are
chosen to initially produce more diffuse shapes, as this configura-
tion was empirically found to result in better performance during
optimization. The initial opacity is set to 0.1. A detailed list of the
hyperparameters can be found in Tab. 4.

7. Methodology Details

2D equations. We define the 2D convex indicator function for our
convex hull by adapting the smooth convex representation from 3D
to 2D, utilizing the equations introduced in Sec. 3.1. Specifically,
we define ϕ(q) and I(q) as in Eqs. (2) and (3), but substitute the
3D point p with the 2D point q and replace the planes delimiting
the 3D convex hull with the lines that delimit the resulting 2D
convex hull.

ϕ(q) = log

(
T∑

t=1

exp (d δ Lj(q))

)
, (7)

where T is the total number of lines delimiting the 2D convex
shape.

The indicator function I(q) of the smooth convex is then de-
fined by:

I(q) = Sigmoid (−d σ ϕ(q)) . (8)

8. Ablation Study

Perspective-Aware Scaling in 2D Projection. To incorporate
perspective effects in the 2D projection, we scale δ and σ by the
distance d, ensuring that the appearance of the convex shape re-
mains consistent regardless of its distance from the camera. Ta-
ble 5 provides an ablation study demonstrating the necessity of
scaling δ and σ as well as analyzing the impact of the scaling mag-
nitude.

9. More Results

Experiments on Synthetic Data. To highlight the effectiveness of
our smooth convexes for rendering different shapes, we designed
four 2D synthetic examples, where the optimization is performed
in 2D, with a single image as ground truth. Figure 12 illustrates the
optimization process of our smooth convexes on those four distinct
shapes during training. Our convex shapes are highly versatile and
capable of approximating a wide range of different shapes.

Real-world Novel View Synthesis. Figure 13 shows additional
qualitative results, highlighting the capabilities of 3D Convex
Splatting compared to 3D Gaussians and 2D Gaussians. The in-
herent softness of Gaussian primitives often leads to blurrier im-
ages and noticeable artifact-prone regions. While PSNR favors
such blurrier images due to imprecise image alignment, they lack
high-quality detail. Compared to Gaussian, 3D Convex Splatting
does not produce any blurry areas and often results in a rendering
much closer to the ground truth. For instance, in the Bicycle scene,
Gaussian methods produce blurry artifacts on the street and in the
grass, whereas 3D Convex Splatting achieves a result that closely
matches the ground truth. Tables 6 to 11 show the complete quan-
titative results for each scene. 3D Convex Splatting outperforms
3DGS, 2DGS, and GES across all metrics on indoor scenes, the
Deep Blending dataset, and the Tanks & Temples dataset.
Additional Visualizations. Figure 14 shows the depth maps ob-
tained using 3D convexes vs. Gaussians, illustrating our better ge-
ometric quality, producing fewer artifacts and smoother depths.
Furthermore, Fig. 15 shows the representation of a wall. It con-
firms that convexes generate denser and more physically accurate
wall representations, whereas Gaussians produce more diffused
shapes.



Table 4. Hyperparameters for Convex Splatting

Parameter Indoor Outdoor

Normal Light Normal Light

Number of training iterations 30, 000
position lr delay mult 0.01
position lr max steps 30, 000
feature lr 0.0025
opacity lr 0.01
lambda dssim 0.2
densification interval 200
densify from iter 500
opacity reset 0.2
opacity reset interval 3000
remove size threshold 0.3
min opacity 0.03
lr mask 0.01
lr delta 0.005
nb points 6
convex size 1.2
set opacity 0.1
set delta 0.1
opacity cloning 0.5
delta scaling cloning 1
shifting cloning 1

set sigma 9 e−4 9.5 e−4 1 e−3 9.5 e−4

densify grad threshold 6 e−6 2.5 e−5 1 e−6 2.5 e−5

lr sigma 4.5 e−3 4.5 e−3 4 e−3 4.5 e−3

reset opacity until 5000 5000 18000 5000
scaling cloning 0.7 0.63 0.6 0.63
sigma scaling cloning 0.85 0.88 0.88 0.88
mask threshold 2 e−2 1 e−2 1 e−2 1 e−2

lr convex points init 4 e−4 5 e−4 5 e−4 5 e−4

lr convex points final 4 e−6 5 e−6 5 e−6 5 e−6

densify until iter 9500 9000 9000 9000
storage 32-bit precision 16-bit precision 32-bit precision 16-bit precision

Magnitude Truck Train DrJohnson Playroom

1 19.47 19.14 29.17 28.82√
d 25.49 21.41 29.49 29.98

d 25.65 22.23 29.54 30.08
d2 7.08 8.91 8.42 8.99

Table 5. Perspective-Aware Scaling in 2D Projection. We eval-
uate the PSNR under varying scaling magnitudes.

Truck Train DrJohnson Playroom

3DGS 0.148 0.218 0.244 0.241
2DGS 0.173 0.251 0.257 0.257
GES 0.162 0.232 0.249 0.252
3DCS 0.125 0.187 0.238 0.237

Table 6. LPIPS score for T&T and DB datasets.
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Figure 12. Smooth convexes can represent a wide variety of shapes, whether hard or soft, dense or diffuse. They effectively approximate
diverse geometries, including both polyhedra and Gaussians, while requiring fewer primitives for accurate representation. The red lines
describe the convex hull, whereas the black dots represent the point set.

Truck Train DrJohnson Playroom

3DGS 25.18 21.09 28.76 30.04
2DGS 25.12 21.14 28.95 30.05
GES 25.07 21.75 29.24 30.06
3DCS 25.65 22.23 29.54 30.08

Table 7. PSNR score for T&T and DB datasets.

Truck Train DrJohnson Playroom

3DGS 0.879 0.802 0.899 0.906
2DGS 0.874 0.789 0.900 0.906
GES 0.872 0.800 0.899 0.902
3DCS 0.882 0.820 0.902 0.902

Table 8. SSIM score for T&T and DB datasets.

Bicycle Flowers Garden Stump Treehill Room Counter Kitchen Bonsai

3DGS 0.205 0.336 0.103 0.210 0.317 0.220 0.204 0.129 0.205
2DGS 0.218 0.346 0.115 0.222 0.329 0.223 0.208 0.133 0.214
GES 0.272 0.342 0.110 0.218 0.331 0.220 0.202 0.127 0.206
3DCS 0.216 0.322 0.113 0.227 0.317 0.193 0.182 0.117 0.182

Table 9. LPIPS score for the MipNerf360 dataset.

Bicycle Flowers Garden Stump Treehill Room Counter Kitchen Bonsai

3DGS 25.24 21.52 27.41 26.55 22.49 30.63 28.70 30.31 31.98
2DGS 24.87 21.15 26.95 26.47 22.27 31.06 28.55 30.50 31.52
GES 24.76 21.33 26.89 26.06 22.31 31.03 28.88 31.21 31.94
3DCS 24.72 20.52 27.09 26.12 21.77 31.70 29.02 31.96 32.64

Table 10. PSNR score for the MipNerf360 dataset.

Bicycle Flowers Garden Stump Treehill Room Counter Kitchen Bonsai

3DGS 0.771 0.605 0.868 0.775 0.638 0.914 0.905 0.922 0.938
2DGS 0.752 0.588 0.852 0.765 0.627 0.912 0.900 0.919 0.933
GES 0.727 0.600 0.846 0.768 0.631 0.910 0.899 0.920 0.939
3DCS 0.737 0.575 0.850 0.746 0.595 0.925 0.909 0.930 0.945

Table 11. SSIM score for the MipNerf360 dataset.
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Figure 13. Qualitative Comparison between 3DCS, 3DGS and 2DGS. 3D Convex Splatting achieves high-quality novel view synthesis
and fast rendering by representing scenes with 3D smooth convexes. In contrast, the softness of Gaussian primitives often results in blurring
and loss of detail, while 3D Convex Splatting effectively captures sharp edges and fine details.
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Figure 14. Depthmap Comparison. 3DCS generates fewer artifacts and a cleaner depth map than 3DGS.

Convexes (3DCS) Gaussians (3DGS)

Figure 15. Wall Approximation. Example showing that 3DCS approximates a wall more uniformly and accurately than 3DGS.
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