
StreamingT2V: Consistent, Dynamic, and Extendable Long Video Generation
from Text (Appendix)

This appendix complements our main paper with experi-
ments, in which we further investigate the text-to-video gen-
eration quality of StreamingT2V, demonstrate even longer
sequences than those assessed in the main paper, and
provide additional information on the implementation of
StreamingT2V and the experiments carried out.

In Sec. A.1, a user study is conducted on the test set,
in which all text-to-video methods under consideration are
evaluated by humans to determine the user preferences.

Sec. A.2 supplements our main paper by additional qual-
itative results of StreamingT2V for very long video genera-
tion, and qualitative comparisons with competing methods.

In Sec. A.3, we present ablation studies to show the ef-
fectiveness of our proposed components CAM, APM and
randomized blending.

In Sec. A.4, implementation and training details, includ-
ing hyperparameters used in StreamingT2V, and implemen-
tation details of our ablated models are provided.

Sec. A.5 provides the prompts that compose our testset.
Finally, in Sec. A.6, the exact definition of the motion

aware warp error (MAWE) is provided.

A.1. User Study
We conduct a user study comparing our StreamingT2V
method with prior work using the video results generated
for the benchmark of Sec. 5.3 main paper. To remove po-
tential biases, we resize and crop all videos to align them.
The user study is structured as a one vs one comparison
between our StreamingT2V method and competitors where
participants are asked to answer three questions for each
pair of videos:
• Which model has better motion?
• Which model has better text alignment?
• Which model has better overall quality?
We accept exactly one of the following three answers for
each question: preference for the left model, preference for
the right model, or results are considered equal. To en-
sure fairness, we randomize the order of the videos pre-
sented in each comparison, and the sequence of compar-
isons. Fig. A.1 shows the preference score obtained from
the user study as the percentage of votes devoted to the re-
spective answer.

Across all comparisons to competing methods, Stream-
ingT2V is significantly more often preferred than the com-
peting method, which demonstrates that StreamingT2V
clearly improves upon state-of-the-art for long video gen-
eration. For instance in motion quality, as the results of
StreamingT2V are non-stagnating videos, temporal consis-
tent and possess seamless transitions between chunks, 65%
of the votes were preferring StreamingT2V, compared to
17% of the votes preferring SEINE.

Competing methods are much more affected by quality
degradation over time, which is reflected in the preference
for StreamingT2V in terms of text alignment and overall
quality.

A.2. Qualitative Results
Complementing our visual results shown in the main pa-
per (see Fig 5 main paper) , we present additional qual-
itative results of StreamingsT2V on our test set on very
long video generation, and further qualitative comparisons
to prior works on 240 frames.

A.2.1. Very Long Video Generation
Supplementing our main paper, we show that Stream-
ingT2V can be used for very long video generation. To
this end, we generate and show videos consisting of 1200
frames, thus spanning 2 minutes, which is 5 times longer
than the ones produced for the experiments in our main pa-
per. Fig. A.2 show these text-to-video results of Stream-
ingT2V for different actions, e.g. dancing, running, or cam-
era moving, and different characters like bees or jellyfish.
We can observe that scene and object features are kept
across each video generation (see e.g. Fig. A.2(a)&(e)),
thanks to our proposed APM module. Our proposed
CAM module ensures that generated videos are temporally
smooth, with seamless transitions between video chunks,
and not stagnating (see e.g. Fig. A.2(f)&(k)).

A.2.2. More Qualitative Evaluations.
The visual comparisons shown in Fig. A.3, A.4, A.5,
A.6 demonstrate that StreamingT2V significantly excels
the generation quality of all competing methods. Stream-
ingT2V shows non-stagnating videos with good motion
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Figure A.1. We conduct a user study, asking humans to assess the test set results (mentioned in Sec. 5.3 of the paper) in a one-to-one
evaluation, where for any prompt of the test set and any competing method, the results of the competing method have to be compared with
the corresponding results of our StreamingT2V method. For each comparison of our method to a competing method, we report the relative
of number votes that prefer StreamingT2V (i.e. wins), that prefer the competing method (i.e. losses), and that consider results from both
methods as equal (i.e. draws).



(a) People dancing in room filled with fog and colorful lights

(b) Camera moving in a wide bright ice cave

(c) Marvel at the diversity of bee species

(d) Dive into the depths of the ocean: explore vibrant coral reefs

(e) Venture into the kelp forests: weave through towering underwater forests

(f) Experience the dance of jellyfish: float through mesmerizing swarms of jellyfish

(g) Enter the realm of ice caves: venture into frozen landscapes

(h) Wide shot of battlefield, stormtroopers running at night, smoke, fires and smokes

(i) Witness the wonders of sea caves

(j) Camera moving around vast deserts, where dunes stretch endlessly into the horizon

(k) Enter the fascinating world of bees: explore the intricate workings of a beehive

Figure A.2. Qualitative results of StreamingT2V for different prompts. Each video has 1200 frames.

quality, in particular seamless transitions between chunks
and temporal consistency.

Videos generated by DynamiCrafter-XL eventually pos-

sess severe image quality degradation. For instance, we
observe in Fig. A.3 eventually wrong colors at the bea-
gle’s face and the background pattern heavily deteriorates.



The quality degradation also heavily deteriorates the textual
alignment (see the result of DynamiCrafter-XL in Fig. A.5).
Across all visual results, the method SVD is even more sus-
ceptible to these issues.

The methods SparseControl and FreeNoise eventually
lead to almost stand-still, and are thus not able to perform
the action described in a prompt, e.g. ”zooming out” in
Fig. A.6. Likewise, also SEINE is not following this camera
instructions (see Fig. A.6).

OpenSora is mostly not generating any motion, leading
either to complete static results (Fig. A.3), or some image
warping without motion (Fig. A.5). OpenSoraPlan is loos-
ing initial object details and suffers heavily from quality
degradation through the autoregressive process, e.g. the dog
is hardly recognizable at the of the video generation (see
Fig. A.3), showing again that a sophisticated conditioning
mechanism is necessary.

I2VGen-XL shows low motion amount, and eventually
quality degradation, leading eventually to frames that are
weakly aligned to the textual instructions.

We further analyse visually the chunk transitions using
an X-T slice visualization in Fig. A.7. We can observe that
StreamingT2V leads to smooth transitions. In contrast, we
observe that conditioning via CLIP or concatenation may
lead to strong inconsistencies between chunks.

A.3. Ablation Studies
To assess the importance of our proposed components, we
conduct several ablation studies on a randomly sampled set
of 75 prompts from our validation set that we used during
training.

Specifically, we compare CAM against established con-
ditioning approaches in Sec. A.3.1, analyse the impact of
our long-term memory APM in Sec. A.3.2, and ablate on
our modifications for the video enhancer in Sec. A.3.3.

A.3.1. Conditional Attention Module.
To analyse the importance of CAM, we compare CAM (w/o
APM) with two baselines (baseline details in Sec. A.3.1.1):
(i) Connect the features of CAM with the skip-connection
of the UNet via zero convolution, followed by addition.
We zero-pad the condition frame and concatenate it with
a frame-indicating mask to form the input for the modified
CAM, which we denote as Add-Cond. (ii) We append the
conditional frames and a frame-indicating mask to input of
Video-LDM’s Unet along the channel dimension, but do not
use CAM, which we denote as Conc-Cond. We train our
method with CAM and the baselines on the same dataset.
Architectural details (including training) of these baselines
are provided in the appendix.

We obtain an SCuts score of 0.24, 0.284 and 0.03 for
Conc-Cond, Add-Cond and Ours (w/o APM), respectively.
This shows that the inconsistencies in the input caused by

the masking leads to frequent inconsistencies in the gen-
erated videos and that concatenation to the Unet’s input is
a too weak conditioning. In contrast, our CAM generates
consistent videos with a SCuts score that is 88% lower than
the baselines.

A.3.1.1. Ablation models
For the ablation of CAM, we considered two baselines that
we compare with CAM. Here we provide additional imple-
mentation details of these baselines.

The ablated model Add-Cond applies to the features of
CAM (i.e. the outputs of the encoder and middle layer
of the ControlNet part in Fig 3 from main paper) zero-
convolution, and uses addition to fuse it with the features
of the skip-connection of the UNet (similar to Control-
Net [7]) (see Fig. A.10). We provide here additional de-
tails to construct this model. Given a video sample V ∈
RF×H×W×3 with F = 16 frames, we construct a mask
M ∈ {0, 1}F×H×W×3 that indicates which frame we use
for conditioning, i.e. Mf [i, j, k] = Mf [i′, j′, k′] for all
frames f = 1, . . . , F and for all i, j, k, i′, j′, k′. We require
that exactly F − Fcond frames are masked, i.e.

F∑
f=1

Mf [i, j, k] = F − Fcond, for all i, j, k. (A.1)

We concatenate [V⊙M,M ] along the channel dimension
and use it as input for the image encoder Econd, where ⊙
denotes element-wise multiplication.

During training, we randomly set the mask M . During
inference, we set the mask for the first 8 frames to zero, and
for the last 8 frames to one, so that the model conditions on
the last 8 frames of the previous chunk.

For the ablated model Conc-Cond, we start from our
Video-LDM’s UNet, and modify its first convolution. Like
for Add-Cond, we consider a video V of length F = 16 and
a mask M that encodes which frames are overwritten by ze-
ros. Now the Unet takes [zt, E(V)⊙M,M ] as input, where
we concatenate along the channel dimension. As with Add-
Cond, we randomly set M during training so that the infor-
mation of 8 frames is used, while during inference, we set
it such that the last 8 frames of the previous chunk are used.
Here E denotes the VQ-GAN encoder (see Sec. 3).
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Figure A.3. Video generation for the prompt ”A beagle reading a paper”, using StreamingT2V and competing methods. For each method,
the image sequence of its first row is continued by the image in the leftmost column of the following row.
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Figure A.4. Video generation for the prompt ”A beagle reading a paper”, using StreamingT2V and competing methods. For each method,
the image sequence of its first row is continued by the image in the leftmost column of the following row.
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Figure A.5. Video generation for the prompt ”Camera is zooming out and the baby starts to cry”, using StreamingT2V and competing
methods. For each method, the image sequence of its first row is continued by the image in the leftmost column of the following row.
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Figure A.6. Video generation for the prompt ”Camera is zooming out and the baby starts to cry”, using StreamingT2V and competing
methods. For each method, the image sequence of its first row is continued by the image in the leftmost column of the following row.
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(c) SparseControl

Figure A.7. Visual comparison of SparseControl, DynamiCrafter-XL and StreamingT2V. All text-to-video results are generated using the
same prompt. The X-T slice visualization shows that DynamiCrafter-XL and SparseControl suffer from severe chunk inconsistencies and
repetitive motions. In contrast, our method shows seamless transitions and evolving content.



Figure A.8. Ablation study on the APM module. Top row is generated from StreamingT2V, bottom row is generated from StreamingT2V
w/o APM.

A.3.2. Appearance Preservation Module

We analyse the impact of utilizing long-term memory in the
context of long video generation.

Fig. ?? and Fig. A.8 show that long-term memory greatly
helps keeping the object and scene features across autore-
gressive generations. Thanks to the usage of long-term
information via our proposed APM module, identity and
scene features are preserved throughout the video. For in-
stance, the face of the woman in Fig. A.8 (including all
its tiny details) are consistent1 across the video generation.
Also, the style of the jacket and the bag are correctly gener-
ated throughout the video. Without having access to a long-
term memory, these object and scene features are changing
over time.

This is also supported quantitatively. We utilize a per-
son re-identification score to measure feature preservation
(definition in Sec. A.3.2.1), and obtain scores of 93.42 and
94.95 for Ours w/o APM, and Ours, respectively. Our APM
module thus improves the identity/appearance preservation.
Also the scene information is better kept, as we observe an
image distance score in terms of LPIPS [8] of 0.192 and
0.151 for Ours w/o APM and Ours, respectively. We thus
have an improvement in terms of scene preservation of more
than 20% when APM is used.

1The background appears to have changed. However, please note that
the camera is rotating so that a different area behind the two woman be-
comes visible, so that the background change is correct.



A.3.2.1. Measuring Feature Preservation.
We employ a person re-identification score as a proxy to
measure feature preservation. To this end, let Pn = {pni }
be all face patches extracted from frame n using an off-
the-shelf head detector [4] and let Fn

i be the corresponding
facial feature of pni , which we obtain from an off-the-shelf
face recognition network [4]. Then, for frame n, n1 :=
|Pn|, n2 := |Pn+1|, we define the re-id score re-id(n) for
frame n as

re-id(n) :=

{
maxi,j cosΘ(Fn

i , F
n+1
j ), n1, n2 > 0

0 otherwise.
(A.2)

where cosΘ is the cosine similarity. Finally, we obtain the
re-ID score of a video by averaging over all frames, where
the two consecutive frames have face detections, i.e. with
m := |{n ∈ {1, .., N} : |Pn| > 0}|, we compute the
weighted sum:

re-id :=
1

m

N−1∑
n=1

re-id(n), (A.3)

where N denotes the number of frames.

A.3.3. Randomized Blending.
We assess our randomized blending approach by compar-
ing against two baselines. (B) enhances each video chunk
independently, and (B+S) uses shared noise for consecu-
tive chunks, with an overlap of 8 frames, but not random-
ized blending. We compute per sequence the standard de-
viation of the optical flow magnitudes between consecutive
frames and average over all frames and sequences, which
indicates temporal smoothness. We obtain the scores 8.72,
6.01 and 3.32 for B, B+S, and StreamingT2V, respectively.
Thus, noise sharing improves chunk consistency (by 31%
vs B), but it is significantly further improved by random-
ized blending (by 62% vs B).

These findings are supported visually. Fig. A.9 shows
ablated results on our randomized blending approach. From
the X-T slice visualizations we can see that the random-
ized blending leads to smooth chunk transitions, confirm-
ing our observations and quantitative evaluations. In con-
trast, when naively concatenating enhanced video chunks,
or using shared noise, the resulting videos possess visible
inconsistencies between chunks.

A.4. Implementation detail
We generate F = 16 frames, condition on Fcond =
8 frames, and display videos with 10 FPS. Training is
conducted using an internal dataset. We sample with
3FPS@256x256 16 frames (during CAM training) and 32
frames (during CAM+APM training).

CAM training: we freeze the weights of the pre-trained
Video-LDM and train the new layers of CAM with batch
size 8 and learning rate 5 · 10−5 for 400K steps.
CAM+APM training: After the CAM training, we freeze
the CLIP encoder and the temporal layers of the main
branch, and train the remaining layers for 1K steps.

The image encoder Econd used in CAM is composed of
stacked 2D convolutions, layer norms and SiLU activations.
For the video enhancer, we diffuse an input video using
T ′ = 600 steps.

In order to train the APM module, we randomly sample
an anchor frame out of the first 16 frames. For the con-
ditioning and denoising, we use the frames 17 − 24 and
17 − 32, respectively. This aligns training with inference,
where there is a large time gap between the conditional
frames and the anchor frame. In addition, by randomly sam-
pling an anchor frame, the model can leverage the CLIP in-
formation only for the extraction of high-level semantic in-
formation, as we do not provide a frame index to the model.

A.4.1. Streaming T2V Stage
For the StreamingT2V stage, we use classifier free guid-
ance [1, 2] from text and the anchor frame. More precisely,
let ϵθ(xt, t, τ, a) denote the noise prediction in the Stream-
ingT2V stage for latent code xt at diffusion step t, text τ and
anchor frame a. For text guidance and guidance by the an-
chor frame, we introduce weights ωtext and ωanchor, respec-
tively. Let τnull and anull denote the empty string, and the
image with all pixel values set to zero, respectively. Then,
we obtain the multi-conditioned classifier-free-guided noise
prediction ϵ̂θ (similar to DynamiCrafter-XL [6]) from the
noise predictor ϵ via

ϵ̂θ(xt, t, τ, a) = ϵθ(xt, t, τnull, anull)

+ ωtext

(
ϵθ(xt, t, τ, anull)

− ϵθ(xt, t, τnull, anull)
)

+ ωanchor

(
ϵθ(xt, t, τ, a)

− ϵθ(xt, t, τ, anull)
)
. (A.4)

We then use ϵ̂θ for denoising. In our experiments, we set
ωtext = ωanchor = 7.5. During training, we randomly re-
place τ with τnull with 5% likelihood, the anchor frame a
with anull with 5% likelihood, and we replace at the same
time τ with τnull and a with anull with 5% likelihood.

Additional hyperparameters for the architecture, training
and inference of the Streaming T2V stage are presented in
Tab. A.7, where Per-Pixel Temporal Attention refers to the
attention module used in CAM (see Fig. 3)

A.5. Test set prompts
1. A camel resting on the snow field.
2. Camera following a pack of crows flying in the sky.



t

X-
T 

Sl
ice

Vi
de

o

t

X-
T 

Sl
ice

Vi
de

o

t

X-
T 

Sl
ice

Vi
de

o

t

X-
T 

Sl
ice

Vi
de

o

t

X-
T 

Sl
ice

Vi
de

o

t

X-
T 

Sl
ice

Vi
de

o

(a) Naive Concatenation (b) Shared Noise (c) Randomized Blending

Figure A.9. Ablation study on our video enhancer improvements. The X-T slice visualization shows that randomized blending leads to
smooth chunk transitions, while both baselines have clearly visible, severe inconsistencies between chunks.

Figure A.10. Illustration of the Add-Cond baseline, which is used in Sec. A.3.1.

3. A knight riding on a horse through the countryside.
4. A gorilla eats a banana in Central Park.
5. Men walking in the rain.
6. Ants, beetles and centipede nest.
7. A squirrel on a table full of big nuts.
8. Close flyover over a large wheat field in the early morn-

ing sunlight.
9. A squirrel watches with sweet eyes into the camera.

10. Santa Claus is dancing.
11. Chemical reaction.
12. Camera moving in a wide bright ice cave, cyan.
13. Prague, Czech Republic. Heavy rain on the street.

14. Time-lapse of stormclouds during thunderstorm.
15. People dancing in room filled with fog and colorful

lights.
16. Big celebration with fireworks.
17. Aerial view of a large city.
18. Wide shot of battlefield, stormtroopers running at night,

fires and smokes and explosions in background.
19. Explosion.
20. Drone flythrough of a tropical jungle with many birds.
21. A camel running on the snow field.
22. Fishes swimming in ocean camera moving.
23. A squirrel in Antarctica, on a pile of hazelnuts cinematic.



Per-Pixel Temporal Attention
Sequence length Q 16
Sequence length K,V 8
Token dimensions 320, 640, 1280
Appearance Preservation Module
CLIP Image Embedding Dim 1024
CLIP Image Embedding Tokens 1
MLP hidden layers 1
MLP inner dim 1280
MLP output tokens 16
MLP output dim 1024
1D Conv input tokens 93
1D Conv output tokens 77
1D Conv output dim 1024
Cross attention sequence length 77
Training
Parametrization ϵ
Diffusion Setup
Diffusion steps 1000
Noise scheduler Linear
β0 0.0085
βT 0.0120
Sampling Parameters
Sampler DDIM
Steps 50
η 1.0
ωtext 7.5
ωanchor 7.5

Table A.7. Hyperparameters of Streaming T2V Stage. Additional
architectural hyperparameters are provided by the Modelsope re-
port [5].

24. Fluids mixing and changing colors, closeup.
25. A horse eating grass on a lawn.
26. The fire in the car is extinguished by heavy rain.
27. Camera is zooming out and the baby starts to cry.
28. Flying through nebulas and stars.
29. A kitten resting on a ball of wool.
30. A musk ox grazing on beautiful wildflowers.
31. A hummingbird flutters among colorful flowers, its

wings beating rapidly.
32. A knight riding a horse, pointing with his lance to the

sky.
33. steampunk robot looking at the camera.
34. Drone fly to a mansion in a tropical forest.
35. Top-down footage of a dirt road in forest.
36. Camera moving closely over beautiful roses blooming

time-lapse.
37. A tiger eating raw meat on the street.
38. A beagle looking in the Louvre at a painting.
39. A beagle reading a paper.
40. A panda playing guitar on Times Square.

41. A young girl making selfies with her phone in a crowded
street.

42. Aerial: flying above a breathtaking limestone structure
on a serene and exotic island.

43. Aerial: Hovering above a picturesque mountain range on
a peaceful and idyllic island getaway.

44. A time-lapse sequence illustrating the stages of growth
in a flourishing field of corn.

45. Documenting the growth cycle of vibrant lavender flow-
ers in a mesmerizing time-lapse.

46. Around the lively streets of Corso Como, a fearless ur-
ban rabbit hopped playfully, seemingly unfazed by the
fashionable surroundings.

47. Beside the Duomo’s majestic spires, a fearless falcon
soared, riding the currents of air above the iconic cathe-
dral.

48. A graceful heron stood poised near the reflecting pools
of the Duomo, adding a touch of tranquility to the vibrant
surroundings.

49. A woman with a camera in hand joyfully skipped along
the perimeter of the Duomo, capturing the essence of the
moment.

50. Beside the ancient amphitheater of Taormina, a group of
friends enjoyed a leisurely picnic, taking in the breath-
taking views.

A.6. MAWE Definition
For MAWE, we measure the motion amount using OFS (op-
tical flow score), which computes for a video the mean of
the squared magnitudes of all optical flow vectors between
any two consecutive frames. Furthermore, for a video V ,
we consider the mean warp error [3] W (V), which mea-
sures the average squared L2 pixel distance from a frame to
its warped subsequent frame, excluding occluded regions.
Finally, MAWE is defined as:

MAWE(V) := W (V)
OFS(V)

, (A.5)

which we found to be well-aligned with human perception.
For MAWE, we measure the motion amount using OFS (op-
tical flow score), which computes for a video the mean of
the squared magnitudes of all optical flow vectors between
any two consecutive frames. Furthermore, for a video V ,
we consider the mean warp error [3] W (V), which mea-
sures the average squared L2 pixel distance from a frame to
its warped subsequent frame, excluding occluded regions.
Finally, MAWE is defined as:

MAWE(V) := W (V)
OFS(V)

, (A.6)

which we found to be well-aligned with human percep-
tion.
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