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A. Additional Qualitative Results
Fig. 1 presents additional feature visualization of our self-
supervised model for different 3D scenes. We follow [15]
and use PCA to reduce the point features to three dimen-
sions and visualize them as point colors. Results show that
semantically similar objects result in similar features for all
scenes.

B. Additional Experiments
B.1. Fine-Tuning
Although not the main focus of this work, we also present
results where our self-supervised model is used as a weight
initialization step for fine-tuning on the downstream task.
In Tbl. 1, we present results on the semantic segmentation
task on the three datasets used in our main experiments.
Our self-supervised model provides a significant improve-
ment over supervised models trained from scratch and out-
performs all existing self-supervised models.

B.2. Object-Centric Self-Supervised Methods
Another important line of research focuses on self-
supervised models pre-trained specifically on object-centric
datasets. While these models present strong performance
in object-centric tasks, such as shape classification or shape
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SR-UNet 72.2 25.0 68.2
+ PC [21] 74.1 26.2 70.3
+ CSC [8] 73.8 26.4 72.2
+ MSC [19] 75.3 28.8 –
+ GC [18] 75.7 30.0 72.0

HUNet 77.0 35.4 71.3
+ MSC [19] 78.2 34.9 72.1
+ Ours 78.5 35.7 73.2

Table 1. Fine-tuning. Performance of different pre-trained meth-
ods after fine-tuning on the semantic segmentation task.

segmentation, those models are not well suited for dense
predictions usually required in 3D scene understanding,
such as semantic segmentation of large indoor scenes. How-
ever, due to the nature of these object-centric models, they
are usually also evaluated on the 3D scene understanding
task of object detection, where models need to predict the
bounding box of objects instead of dense per-point instance
segmentation maps. Therefore, we use our self-supervised
model as the 3D backbone in an object detection framework
to compare our model with such methods.

Dataset. In this experiment, we use the ScanNet
dataset [5], and we report mean Average Precission (mAP)
with Intersection over Union (IoU) thresholds of 0.5 and
0.25. We use our model as the 3D backbone of the
3DETR [12] object detection framework, and we evalu-
ate our self-supervised model with two different protocols.
First, we obtain off-the-shelf features by freezing the 3D
backbone while we train the remaining components of the
3DETR [12] framework using our general-purpose features
as input. In the second protocol, we also fine-tune all the
parameters of the 3D backbone using our self-supervised
model as weight initialization.

Baselines. We compare our model to several state-of-
the-art self-supervised models pre-trained on object-centric
datasets and then fine-tuned on the object detection task.
These object-centric models use transformer-based archi-
tectures trained with different Masked Image Modelling
(MIM) objectives. While Point-Bert [23], Point-MAE [13],
and MaskPoint [10] use a non-hierarchical architecture,



Figure 1. Qualitative results. Feature visualization of off-the-shelf features of our method and the baselines. Our learned features align
with semantic classes better than existing methods.



mAP@25 mAP@50

3DETR [12] 62.1 37.9
+ Point-Bert [23] 61.0 38.3
+ Point-MAE [13] 63.4 40.6
+ MaskPoint [10] 63.4 40.6
+ Point-M2AE [25] 66.3 48.3

+ Ours (Lin.) 65.6 40.2
+ Ours (FT) 71.3 52.2

Table 2. Object detection. Comparison of our off-the-shelf fea-
tures to fine-tuning object-centric self-supervised methods.

Obj. Det. Sem. Seg.

mAP@25 mAP@50 ScN S3DIS

Bridge3D [2] 65.3 44.2 73.9 70.2
SAM-MAE [3] 68.2 48.4 75.4 71.8

Ours (Lin.) 65.6 40.2 68.7 59.5
Ours (FT) 71.3 52.2 78.5 73.2

Table 3. 2D-3D KD. Comparison to methods that rely on knowl-
edge distillation from 2D foundation models.

Point-M2AE [25] use a hierarchical model with a bottom-
up masking approach. However, all models reconstruct the
point coordinates from the last layer in the model.

Results. Tbl. 2 presents the results of our experiments.
Our off-the-shelf features, Lin. on Tbl. 2, present a com-
petitive performance, outperforming most existing object-
centric self-supervised methods. When we further fine-tune
our model on the downstream task, FT on Tbl. 2, we outper-
form all models by a large margin. These results are in line
with the results presented by Xie et al. [21] and highlight
the need for scene-centric self-supervised methods.

B.3. 2D-3D Knowledge Distillation Methods
Since general models for 3D scene understanding are not
available, recent works have proposed distilling knowledge
from 2D foundation models. While Bridge3D [2] com-
bines several 2D foundation models for knowledge distil-
lation into a non-hierarchical 3D transformer architecture,
SAM-MAE [3] uses SAM [9] to mask objects in 3D space
and a MIM objective to train the same model architecture.
We compare our self-supervised model to these models fine-
tuned on object detection and semantic segmentation tasks.

Result. Tbl. 3 presents the results of this experiment.
While our linear probing setup is not able to achieve the
same performance as the baselines, when fine-tuned, our
model can outperform them in all experiments.

C. Ablation Studies

In this section, we describe the ablation studies conducted
to validate our design choices. For all our experiments, we
report linear probing performance on the task of semantic
segmentation on ScanNet. Unless otherwise stated, due to
the large training times of the self-supervise stage, we per-
form our ablation studies on a smaller model that takes as
input a coarser voxelization of the scene, 4 cm voxels, and
we train our models for 800 epochs instead of 1800. For
more details of the experimental setup and model used, we
refer the reader to Sec. D.

C.1. Masking

In this experiment, we evaluate the importance of our
Masked Scene Modeling objective. We train a model with
our full framework and the same model without our mask-
ing strategy. In this version of our framework, the crops
given to the student model are not masked, and the full
crop is processed by the model. Then, the training ob-
jective is the prediction of deep features from the teacher
model, which has access to a full view of the scene with
different data augmentation. This objective is similar to the
self-distillation objective used in MM3D [22]. Tbl. 4 (a)
presents the results of this experiment. We can see that the
proposed Masked Scene Modeling objective is essential for
learning semantically relevant features, leading to an im-
provement of more than +16 points.

C.2. Hierarchical Supervision

In this experiment, we measure the importance of the hi-
erarchical reconstruction objective. We compare our full
framework with a model trained with supervision only on
the last layer of the decoder, a common practice in exist-
ing self-supervised approaches for 3D scenes [8, 19, 21].
Tbl. 4 (b) shows that supervising only the last layer leads
to a gap in performance of more than +6. This experiment
aligns with the findings of our pilot study and highlights the
importance of hierarchical supervision when training hier-
archical architectures.

C.3. Masking Strategy

We also compare our bottom-up masking strategy with a
traditional top-down approach, similar to the one used in
MSC [19]. In this approach, instead of incorporating the
masked patches in the decoder, we add them in the encoder
with the corresponding learnable token. We can see that
in Tbl. 4 (c), even though a top-down approach can lead
to relatively good features, our bottom-up approach leads
to semantically richer features with more than +4 points of
improvement on the downstream task.



No Mask 50.7
Mask 66.8

(a) Masking. Patch supervision with
vs without masking.

Last 60.5
All 66.8

(b) Supervision. Layers in the hier-
archy used in the loss.

top-down 62.4
bottom-up 66.8

(c) Mask strategy. Masking hierar-
chy top-down vs bottom-up.

SparseConv 61.8
MHA 52.3

HUNet 66.8
(d) Model. Types of model used.

Table 4. Ablation studies. Evaluation of the different components of our framework on the task of semantic segmentation on ScanNet.
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Figure 2. Masking ratio. Linear probing performance for differ-
ent masking ratios.

C.4. Model Architecture
We also evaluate the effect of the model architecture used.
We trained two additional models, one only based on Sparse
convolutions without Multi-Head Attention (MHA) blocks,
and another one with MHA instead of ResNet blocks as in
Ptv3 [20]. Tbl. 4 (d) indicates that the model using only
sparse convolutions provides lower performance than our
hybrid architecture. Moreover, the model with only MHA
layers significantly reduces the performance on the down-
stream task. This is due to the additional constraints of
such models, where a lower learning rate is necessary to
avoid unstable training. Although we believe that an ex-
haustive hyperparameter search could lead to an improve-
ment of such models, our hybrid model architecture is ro-
bust to higher learning rates and, therefore, easier to train.

C.5. Masking Ratio
Additionally, we measure the influence of the masking ratio
on the final performance of the model. We evaluated a range
of ratios from 20% to 70% with intervals of 10% and plot
the results in Fig. 2. The results show that the framework is
relatively robust to the masking ratio used, achieving simi-
lar performance for ratios between 30% and 60%, with the
highest value obtained at 40%. However, smaller ratios,
such as 20%, or too high, such as 70%, lead to a significant
drop in performance.

C.6. Layer Importance
To expand our pilot study, we further evaluate the impor-
tance of the different layers on the performance of our final
model. First, we evaluate the linear probing abilities when
only one layer is used as input. Then, we evaluate the effect
of using all layers except one for the same linear probing
setup. Tbl. 5 present the results of this experiment. Re-
sults show that, for all layers, using the output of one layer

Layer Alone Remove

1 28.3 67.1
2 43.5 67.0
3 54.8 67.0
4 62.8 66.6
5 62.4 64.4

All 68.7

Table 5. Layer importance. Comparison of the performance on
the linear probing setup when only one layer is used (Alone) or
when all layers except one are used (Remove).
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Figure 3. Scalability experiments. Evaluate the performance of
the model under reduced data used for pre-training and reduced
number of epochs.

alone (Alone in Tbl. 5) leads to a lower performance than
using a concatenation of all of them. Moreover, results also
show that using all layers except one (Remove in Tbl. 5) also
leads to a degradation in performance in all cases. This ex-
periment shows the importance of all layers, indicating that
each layer provides complementary information.

Additionally, we also evaluate different methods of com-
bining such features. We compare the concatenation of fea-
tures used in all of our experiments (68.7 mIoU), to a setup
where the features are aggregated with a sum operator (68.7
mIoU) and to a setup where the features are aggregated with
a learned weighted sum (68.8 mIoU). Our results show that
there is no significant difference between these methods.

C.7. Scaling Properties
Moreover, we evaluate the scaling abilities of our frame-
work w.r.t. the data used for pre-training and the number
of epochs. For this setup, we use our full model and con-
figuration as in the main experiments in the paper. Fig. 3
presents the results of these experiments. Results show that
more data and longer pre-training yield significant improve-



Config Value

Voxel size 2 cm
Norm layers RMSNorm [24]
Downsample Strided SparseConv
Upsample Transpose SparseConv
Serialization Z + TZ + H + TH [20]
Block bias False
Att. drop 0.1
Drop path 0.4
Activation func. GELU [7]
FF layer GEGLU [17]
FF ratio 4
Enc. channels [32, 64, 128, 256, 384]
Enc. ResNet [2, 2, 2, 2, 2]
Enc. MHA [0, 0, 0, 2, 2]
Enc. MHA Window [0, 0, 0, 1024, 1024]
Enc. MHA # Heads [0, 0, 0, 32, 48]
Dec. channels [64, 96, 128, 256, 384]
Dec. ResNet [2, 2, 2, 2, 2]
Dec. MHA [0, 0, 0, 2, 2]
Dec. MHA Window [0, 0, 0, 1024, 1024]
Enc. MHA # Heads [0, 0, 0, 32, 48]

Table 6. Model configuration.

ments for linear probing on semantic segmentation. This
highlights the importance of additional data and training in
self-supervised objectives and paves the road for future im-
provements of our method.

C.8. NN Robustness
Lastly, we evaluate the robustness of the NN evaluation pro-
tocol w.r.t. the distance metric used to compare features.
We compare the L2 distance used in all our experiments
(65.7 mIoU), to the L1 distance (66.4 mIoU) and to the co-
sine distance (66.0 mIoU). Although other distance metrics
yield slightly better performance, the experiment indicates
that the evaluation protocol is robust to the distance metric
chosen for evaluation.

D. Detailed experimental setup
D.1. Model architecture
We designed a Hybrid UNet architecture (HUnet) com-
bining standard ResNet blocks [6] with serialization trans-
former layers as in PTv3 [20]. However, contrary to
PTv3 [20], we use sliding-window attention as in Long-
Former [1] since this eliminates the need for padding and
makes the receptive field adaptive. Moreover, we do not
include xCPE [20] in such layers since the ResNet blocks
can act as conditional positional encoding. Furthermore,
following the design of Stable Diffusion [16], we only in-

Config Value

Voxel size 4 cm
Norm layers RMSNorm [24]
Downsample Strided SparseConv
Upsample Transpose SparseConv
Serialization Z + TZ + H + TH [20]
Block bias False
Att. drop 0.1
Drop path 0.4
Activation func. GELU [7]
FF layer GEGLU [17]
FF Ratio 4
Enc. channels [64, 128, 256, 384]
Enc. ResNet [2, 2, 2, 2]
Enc. MHA [0, 0, 2, 2]
Enc. MHA Window [0, 0, 1024, 1024]
Enc. MHA # Heads [0, 0, 32, 48]
Dec. channels [96, 128, 256, 384]
Dec. ResNet [2, 2, 2, 2]
Dec. MHA [0, 0, 2, 2]
Dec. MHA Window [0, 0, 1024, 1024]
Enc. MHA # Heads [0, 0, 32, 48]

Table 7. Model configuration for ablation studies.

cluded the MHA layers in the lowest resolution levels of the
model, making the model faster and more stable to different
learning rates. Tbl. 6 presents a detailed description of the
different components of our architecture, such as channels
per level, number of layers per level, or activation function
used. We also provide the configuration of the model used
for the ablation studies in Tbl. 7. For these experiments, we
used a smaller model with one level less in the encoder and
decoder, which takes bigger voxels of 4 cm as input.

D.2. Experiment hyperparameters

Self-supervised training. We build our self-supervised
framework on top of the codebase Pointcept [4]. The hy-
perparameters used for training our self-supervised model
are described in Tbl. 8. As data augmentation, we use the
default augmentations for indoor semantic segmentation of
PTv3 [20]. We only increase the number of points per crop
as described in Tbl. 8.

Linear probing - Semantic and Instance segmentation.
We use the codebase Pointcept [4] for our linear probing ex-
periments in the downstream tasks of semantic and instance
segmentation. The hyperparameters used in these experi-
ments are described in Tbl. 9 and Tbl. 10. For data aug-
mentation, we use the default configuration of PTv3 [20].



Config Value

Optimizer AdamW [11]
Betas (0.9, 0.95)
Weight decay 0.05
Learning rate 0.0015
LR Scheduler Cosine
Batch size 12
Epochs 1800
Warmup epochs 60
Crop size 240000
Mask Ratio 0.4
Teacher mom. 0.996 → 1.0

Table 8. Self-supervised training configuration.

Config Value

ScanNet ScanNet200 S3DIS

Optimizer AdamW [11]
Betas (0.9, 0.95)
Weight decay 0.01
Learning rate 0.01
LR Scheduler Cosine
Batch size 8
Epochs 200 200 100
Warmup epochs 2 2 1
Crop size 120000 120000 200000

Table 9. Linear probing config. for semantic segmentation.

Config Value

ScanNet ScanNet200 S3DIS

Optimizer SGD
Momentum 0.9
Weight decay 0.0001
Learning rate 0.1
LR Scheduler PolyR
Batch size 12 12 8
Epochs 200 200 100
Crop size – – 200000

Table 10. Linear probing config. for instance segmentation.

Coss-Attention - Visual grounding. Given a 3D point
cloud with associated features, 3D ground truth bound-
ing boxes of objects, and a text description, the model is
tasked to select the object that matches the text descrip-
tion. We encode the text with the CLIP text encoder [14]
and use the attention head of Zhand et al. [26] composed
of self- and cross-attention layers. The cross-attention lay-
ers combine the text CLIP embeddings and object fea-

Config Value

Optimizer AdamW [11]
Betas (0.9, 0.95)
Weight decay 0.00001
Learning rate 0.0005
LR Scheduler Cosine
Batch size 12
Epochs 10
Warmup epochs 1

Table 11. Visual grounding configuration.

Config Value

Optimizer AdamW [11]
Betas (0.9, 0.95)
Weight decay 0.1
Learning rate 1e-6
LR Scheduler Cosine
Batch size 24
Epochs 1080
Warmup epochs 9
Clip gradients 0.1
# queries 256
# points 2048

Table 12. Object detection configuration.

tures (obtained from aggregating point features inside ob-
ject bounding boxes). The output of the model is a prob-
ability per object. Then, we train the model using cross-
entropy loss, since the task can be formulated as a classifica-
tion problem where the object matching the text description
should have the highest probability. We use the codebase of
Multi3DRefer [26] and the hyperparameters used in these
experiments are described in Tbl. 11. For data augmenta-
tion, we use the default configuration of PTv3 [20] for the
task of instance segmentation.

Object detection. In these experiments, we use the object
detection framework 3DETR [12]. For the linear probing
and fine-tuning experiments, we use the same configuration
described in Tbl. 12. For data augmentation, we use the
default configuration of 3DETR [12].

Fine-tuning - Semantic segmentation. For fine-tuning
on the task of semantic segmentation, we use a different
configuration than the one used in our linear probing ex-
periments. The hyperparameters of these experiments are
described in Tbl. 13.



Config Value

ScanNet ScanNet200 S3DIS

Optimizer AdamW [11]
Betas (0.9, 0.95)
Weight decay 0.05
Learning rate 0.001
LR Scheduler Cosine
Batch size 48 48 32
Epochs 200 200 500
Warmup epochs 2 2 20
Crop size 120000 120000 100000

Table 13. Fine-tuning config. for semantic segmentation.

Masked Scene Context. For training our model with the
baseline MSC [19], we use different hyperparameters than
the ones recommended by the authors. Our model trained
with the default parameters leads to subpar performance,
obtaining less than 20 mIoU on the task of linear probing for
semantic segmentation on ScanNet. Therefore, we modified
the number of training epochs to 1800 instead of 600 and the
optimizer from SGD to AdamW [11]. These small changes
lead to an increase in performance, as reported in the main
experiments of this paper.
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