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Supplementary Material

This supplementary material provides more results that
enhance and extend the findings presented in the main
manuscript. Due to space constraints, certain details and
experiments were omitted from the primary manuscript.
Specifically, Sec. A presents more ablation studies that of-
fer deeper insights into the proposed TV3S model. Sec. B
details the latest performance results substantiating the ef-
ficacy of our proposed method through a more fair and re-
fined training procedure. Sec. C showcases an expanded
set of visual results demonstrating the segmentation capa-
bilities of TV3S, alongside comparative analyses with addi-
tional models including MRCFA.

A. Additional Ablation Studies
Following the main text, all ablation studies were conducted
on the VSPW dataset using the MiT-B1 and Swin-T back-
bones, adhering to the same training and inference strategies
outlined in the main text.

Effect of spatial information extraction. To assess the
effectiveness of our proposed TV3S architecture in extract-
ing spatial information, we conducted experiments using
single-frame inputs and compared the performance against
baseline segmentation models and other video semantic
segmentation (VSS) methods, as presented in Tab. S1.
While VSS methods are inherently designed for multi-
frame processing, this evaluation isolates their ability to
handle spatial features independently. For a fair compar-
ison, we evaluated our model with and without the TV3S
blocks, noting that our architecture can utilize the tempo-
ral blocks even when only one frame is provided. The re-
sults demonstrate that our model not only performs on par
with the baseline when the TV3S blocks are excluded but
also significantly outperforms it when the blocks are in-
cluded. In contrast, other VSS methods exhibit reduced per-
formance in single-frame evaluations, reflecting their ability
to partially adapt to single-frame inputs despite their multi-
frame design. These findings indicate that our TV3S model
effectively captures spatial information and maintains ro-
bust performance even without temporal context, showcas-
ing its superiority in both spatial and spatiotemporal seg-
mentation tasks.

Effect of the number of TV3S blocks. As detailed in
the main text, the MiT-B1 backbone exhibited enhanced
performance with an increasing number of TV3S blocks,
achieving a mIoU of 40.0 and improved temporal consis-
tency metrics (mVC8 = 90.7, mVC16 = 87.0) when utiliz-
ing four blocks, as shown in Tab. S3. Extending this eval-
uation to the Swin-T backbone and maintaining a consis-

Methods Backbones mIoU↑ WIoU

Segformer MiT-B1 36.5 58.8
CFFM MiT-B1 37.1 59.0
MRCFA MiT-B1 37.0 58.8
TV3S (Ours) MiT-B1 37.7 59.2
TV3S (+Blocks) MiT-B1 38.6 60.3
Segformer MiT-B2 43.9 63.7
CFFM MiT-B2 43.6 63.3
MRCFA MiT-B2 43.4 63.5
TV3S (Ours) MiT-B2 43.8 62.8
TV3S (+Blocks) MiT-B2 44.9 63.7

Segformer MiT-B5 48.9 65.1
CFFM MiT-B5 48.3 65.8
MRCFA MiT-B5 48.0 65.3
TV3S (Ours) MiT-B5 48.9 66.0
TV3S (+Blocks) MiT-B5 49.5 66.4

Mask2Former Swin-T 41.2 62.6
TV3S (Ours) Swin-T 42.8 62.4
TV3S (+Blocks) Swin-T 43.8 62.6
Mask2Former Swin-S 42.1 63.1
TV3S (Ours) Swin-S 49.5 65.8
TV3S (+Blocks) Swin-S 50.5 66.2

Table S1. Comparative effectiveness of models in extracting spa-
tial information from single-frame inputs on the VSPW dataset,
with our proposed method outperforming existing models.

tent framework, the Swin-T backbone attained a mIoU of
44.90 with four blocks, closely aligning with its peak per-
formance of 45.11 achieved using two blocks. Addition-
ally, temporal consistency metrics (mVC8 = 88.0, mVC16 =
83.5) remained stable across different block configurations.
These findings indicate that, while the MiT-B1 backbone
benefits significantly from an increased number of TV3S
blocks, the Swin-T backbone maintains robust performance
with a standardized four-block setup, underscoring the ef-
fectiveness of a unified framework for diverse backbones.

Training with different temporal context. We
assessed the impact of varying the number of tem-
plate frames during training on the MiT-B1 backbone
variant of TV3S, as detailed in Tab. S4. Specifi-
cally, the model was trained with one ({It−3, It}), two
({It−6, It−3, It}), three ({It−9, It−6, It−3, It}) and five
({It−15, It−12, It−9, It−6, It−3, It}) template frames. The
results indicate a clear improvement in visual consistency as
the number of templates increases, showcasing the model’s
enhanced ability to maintain temporal coherence, attributed
to the specialized training methodology. However, while
using five templates yielded the highest mVC values, the
mIoU performance peaked with three templates, offering
a balanced trade-off between segmentation accuracy and



Methods Backbones mIoU↑ mVC8↑ mVC16↑ GFLOPs↓ Params(M)↓ FPS↑
Mask2Former R50 38.5 81.3 76.4 110.6 44.0 19.4
MPVSS R50 37.5 84.1 77.2 38.9 84.1 33.9
Mask2Former R101 39.3 82.5 77.6 141.3 63.0 16.9
MPVSS R101 38.8 84.8 79.6 45.1 103.1 32.3
DeepLabv3+ R101 34.7 83.2 78.2 379.0 62.7 9.2
UperNet R101 36.5 82.6 76.1 403.6 83.2 16.0
PSPNet R101 36.5 84.2 79.6 401.8 70.5 13.8
OCRNet R101 36.7 84.0 79.0 361.7 58.1 14.3
TCB R101 37.8 87.9 84.0 1692 - -
ETC OCRNet 37.5 84.1 79.1 361.7 - -
Segformer MiT-B5 48.9 87.8 83.7 185.0 82.1 9.4
CFFM MiT-B5 49.3 90.8 87.1 413.5 85.5 4.5
MRCFA MiT-B5 49.9 90.9 87.4 373.0 84.5 5.0
TV3S (Ours) MiT-B5 50.4 91.9 89.1 137.0 85.6 14.0

Table S2. Updated quantitative comparison of our MiT-B5 model with existing methods on the VSPW dataset. Our model achieves the
best balance among accuracy, model complexity, and operational speed. FPS and FLOPs are calculated with an input resolution of 480 ×
853.

Backbones TV3S Blocks mIoU mVC8 mVC16

MiT-B1

1 38.4 88.3 83.7
2 39.2 89.5 85.3
3 39.6 88.7 84.2
4 40.0 90.7 87.0

Swin-T

1 44.66 87.9 83.3
2 45.11 88.4 83.9
3 44.41 88.3 83.8
4 44.90 88.0 83.5

Table S3. Performance metrics based on the number of TV3S
blocks in the model.

Templates No. mIoU mVC8 mVC16

1 38.1 90.3 83.6
2 37.6 90.5 84.3
3 40.0 90.7 87.0
5 38.1 91.2 88.0

Table S4. Evaluation based on the number of templates exposed
during training.

temporal consistency. Although further fine-tuning could
refine the model for specific scenarios, the configuration
with three templates is recommended for its optimal bal-
ance, aligning with findings from. This configuration en-
sures the model operates effectively within practical con-
straints while leveraging its temporal modeling strengths.

Applicability of Bi-directional Scanning. We investi-
gated the use of bi-directional scanning, a technique preva-
lent in recent vision-based approaches utilizing mamba, in
the MiT-B1 variant of TV3S (see Tab. S5). This method
involved scanning the encoded feature space in both direc-
tions, with or without adding embeddings during the scan-

Models Evaluation (mIoU)

Bi Bi+Embed Direct

1 TSS (No Shift) 37.33 38.0 38.0
TV3S (No Shift) 38.0 38.4 38.9

TV3S (Shift) 39.6 37.6 39.5

Table S5. Implications of using bi-directional representation with
embedding on the proposed architecture.

Methods Backbones mIoU mVC8 mVC16

VideoMamba MiT-B1 36.2 83.9 78.7
TV3S MiT-B1 40.0 90.7 87.0

MPVSS Swin-B 52.6 89.5 85.9
MPVSS Swin-L 53.9 89.6 85.8
TV3S Swin-B 53.0 90.3 86.8
TV3S Swin-L 55.6 90.7 87.5

Table S6. Additional Experiments with VideoMamba as decoder
and with bigger Swin Transformer backbones

ning process, effectively doubling the computational load
for the decoder. The experimental results indicated that in-
corporating bi-directional scanning did not enhance perfor-
mance and, in some cases, led to degradation. We believe
that this decline may be due to two factors: first, the im-
plementation was conducted in a pixel-wise manner within
the encoded feature space, differing from the patch-wise
approach in the original mamba implementations; second,
scanning the same feature space twice might disrupt the
continuity of information, potentially hindering the model’s
ability to maintain performance. Consequently, these find-
ings suggest that while bi-directional scanning is effective
in certain contexts, its application as a decoder in the present
architecture did not yield benefits and may require further
methodological refinements.



Figure S1. Additional examples showcasing the performance of the proposed TVSS architecture compared with other VSS methods,
demonstrating visual consistency and accuracy.

Additional Experiments. Extended experiments were
conducted during the rebuttal phase, which included testing
VideoMamba and larger backbones of Swin, specifically its
Swin-B and Swin-L variants, as tabulated in Tab. S6. For
the experiments with VideoMamba, we used the MiT-B1
backbone in conjunction with VideoMamba as the decoder.
It was observed that VideoMamba only achieved a mean
Intersection over Union (mIoU) of 36.24, while our TV3S
framework achieved an mIoU of 40.0, thanks to its effective
state propagation and shifted-window mechanism, making
it ideal for dense prediction tasks.

As for the experiments involving larger backbones, it
was noted that by directly extending the current framework
without hyper-parameter tuning, we achieved mIoU scores
that are better than the performance of MPVSS. This find-
ing highlights the robustness of our approach and ensures
fair comparisons with other methods.

B. Updated Performance

Our initial training setup for the TV3S architecture, based
on the MMSegmentation codebase, utilized two A100
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Figure S2. Failure cases of the proposed method: (a) errors in the presence of transparent objects and (b) initial segmentation errors
propagating temporarily before being corrected.

NVIDIA GPUs with a batch size of 2 and trained the
model for 160k iterations using three reference frames.
This configuration resulted in strong temporal consistency
metrics (mVC8 and mVC16), achieving a good trade-off
between computational efficiency and frames per second
(FPS). However, compared to other video semantic segmen-
tation (VSS) methods that were trained using four GPUs,
our model was exposed to fewer data variants, potentially
impacting its generalization capabilities.

To ensure a fairer comparison, we extended the train-
ing duration by an additional 80k iterations, totalling 240k
iterations—a 50% increase in training time. This adjust-
ment compensates for the advantages other methods gain
from using more GPUs, such as exposure to a wider vari-
ety of data and improved generalization. Concurrently, we
halved the learning rate to 3e-5 from 6e-5 to maintain effec-
tive learning without overshooting, keeping the optimizer
and learning rate scheduler configurations consistent.

Under this training setup, as shown in Tab. S2 , our pro-
posed TV3S architecture achieved state-of-the-art perfor-
mance across all evaluated metrics, including mean Inter-
section over Union (mIoU) and temporal consistency met-
rics (mVC8 and mVC16).

C. Additional Qualitative Examples

In this section, we present qualitative examples to further
demonstrate the effectiveness of the proposed TVSS archi-

tecture. As shown in Fig. S1, the segmentation outputs
from TVSS are compared with those from other state-of-
the-art video semantic segmentation (VSS) methods. The
examples illustrate how TVSS maintains good visual con-
sistency across consecutive frames while achieving accu-
rate segmentation. These results underline the advantages
of the temporal state-sharing mechanism, which effectively
propagates temporal information and reduces inconsisten-
cies commonly observed in other methods. The visualiza-
tions in Fig. S1 provide a clear, comparative insight into
how TVSS handles challenging scenarios, reinforcing the
quantitative results discussed earlier.

C.1. Success Cases

The proposed TVSS architecture excels in ensuring both
stability and continuity in the segmentation process across
frames, maintaining a high level of consistency even in dy-
namic and complex environments. The following examples
demonstrate the architecture’s ability to preserve these qual-
ities in challenging visual sequences.

(a) Temporal continuity and object consistency: One
of the standout features of TVSS is its ability to maintain
temporal continuity. In the provided sequences, the model
shows a consistent and stable segmentation of dynamic ob-
jects, such as waterfalls, people, or animals, across multiple
frames. This is particularly evident in cases where objects
remain in motion or where the background changes slightly,
but the segmentation boundaries remain stable, offering a



Figure S3. Visual comparison of segmentation results with 1, 8, and 32 exposed frames during inference.

smooth transition between frames.

(b) Robust segmentation in variable environments: In
more challenging scenes, including those with changing
lighting or background complexity, TVSS continues to
show visual stability. The segmentation boundaries are not
only preserved, but also remain consistent across frames,
regardless of the varying environmental conditions. The ar-
chitecture’s robustness to these changes ensures that even
as new elements or disturbances appear, the model still pro-
vides coherent and unified segmentation results, reflecting
its strong capacity to maintain accuracy over time.

These success cases underline the TVSS architecture’s
ability to offer consistent and continuous segmentation of
objects, crucial for maintaining visual coherence across
video sequences. The model’s strength lies in its ability
to handle the temporal aspect of visual data, ensuring that
segmentation evolves seamlessly across frames without dis-
ruptions.

C.2. Failure Cases

While the proposed TVSS architecture demonstrates robust
performance across various scenarios, it is not without lim-
itations. Fig. S2 illustrates two primary challenging scenar-
ios where the model encounters difficulties.

(a) Transparent objects: The first set of failure cases
involves the presence of transparent objects. Transparent
materials often present ambiguous visual cues, making it
challenging for segmentation models to accurately delineate
boundaries and classify regions. In these instances, TVSS
may misinterpret the transparency, leading to incorrect seg-
mentation of the object or its background.

(b) Error propagation from initial mis-classification:
The second set of challenges pertains to the propagation
of initial segmentation errors. When the model makes an
initial misclassification in a frame, this error can propa-

gate to subsequent frames due to the temporal state-sharing
mechanism. Although TVSS is designed to leverage tempo-
ral information to enhance consistency, early mistakes can
temporarily degrade segmentation accuracy until corrective
learning occurs in subsequent frames.

These failure cases highlight areas for potential improve-
ment, such as incorporating specialized modules for han-
dling transparent materials and enhancing error correction
mechanisms to mitigate the impact of initial misclassifica-
tions. Addressing these challenges will further strengthen
the reliability and applicability of the TVSS architecture in
diverse and complex environments.

C.3. Additional Visualizations

To qualitatively analyze segmentation consistency in videos
and its effect based on the number of frames used during
inference, we present Fig. S3. Visual comparisons demon-
strate that the results from using only one frame exhibit
rough and fragmented segmentations. In contrast, predic-
tions made using eight or thirty-two frames show smoother
and more refined boundaries, closely resembling the ground
truth (GT). This observation underscores the model’s abil-
ity to effectively integrate temporal information, leading to
better object delineation and improved segmentation bound-
aries. The enhanced consistency and quality of segmen-
tation suggest that incorporating more frames enables the
model to capture dynamic features and contextual infor-
mation more effectively, particularly in challenging or am-
biguous areas. This improvement can be attributed to the
model’s capacity to learn from the additional frames, result-
ing in a more accurate representation of the scene. This is
especially apparent in complex or cluttered environments,
where utilizing multiple frames significantly enhances the
robustness and overall accuracy of the segmentation.


