
SplatAD: Real-Time Lidar and Camera Rendering with 3D Gaussian Splatting for
Autonomous Driving

Supplementary Material

In the supplementary material, we provide implementa-
tion details for our method and baselines, evaluation details,
and additional results. In Appendix A, we describe the de-
tails of the lidar rendering. In Appendix B, we describe our
training setup more closely and provide hyperparameters. In
Appendix C, we describe the process of how we generate
point clouds with our baselines. In Appendix D, we pro-
vide additional details and explanations of our rolling shutter
modeling. In Appendix E, we give additional qualitative ex-
amples from our method and baselines. Last, in Appendix F
we provide evaluation details.

A. Lidar rendering details

A.1. Lidar tiling

The tiling for lidar rasterization is done such that each tile has
the same number of lidar points to rasterize. Horizontally,
we define each tile to cover Nϕ lidar points, corresponding to
Nϕ · resϕ degrees, where resϕ is the azimuth resolution. Ver-
tically, each tile covers Nω elevation channels, where the ele-
vation channels are defined in lidar specifications. We set the
elevation tile boundaries to lie between the elevation chan-
nels. Thus, each lidar tile can rasterize Nϕ ·Nω lidar points.
We set Nϕ = 32 and Nω = 8 so that Nϕ ·Nω = 256, analo-
gous to the 16× 16 = 256 pixels in the image tiles. Further,
a lidar point cloud corresponds to Mϕ = ⌈360◦/(Nϕ · resϕ)⌉
tiles horizontally, and Mω = Nbeams/Nω vertically, where
Nbeams is the number of lidar beams/channels.

As described in Sec. 3.3, to find intersections between all
Gaussians and tiles, each Gaussian is defined by an AABB
[(ϕlow, ωlow), (ϕhigh, ωhigh)] centered around its 2D mean in
spherical coordinates µS . The extent of the AABB corre-
sponds to the projected 3 − σ size of the Gaussian, which
further is expanded by acknowledging its velocity. For each
Gaussian, we convert these spherical coordinates to tile coor-
dinates, e.g., (2, 3) denotes the tile that is second horizontally
and third vertically. This yields an AABB in tile coordinates
[(Φlow,Ωlow), (Φhigh,Ωhigh)]. By computing the lower lim-
its inclusively, and the upper limits exclusively, the area of
the AABB expressed in tile coordinates corresponds to the
number of intersections for that Gaussian.

When finding the azimuth tile coordinates, we must ac-
count for the wrapping of angles. Although the 2D means
of Gaussians are bound to [0◦, 360◦), their AABB coordi-
nates are not. In addition, the last azimuth tile might extend
beyond 360◦ as ϕmax = Mϕ · Nϕ · resϕ ≥ 360◦. When
wrapping the angles, this can create some overlap between

the first and last column of tiles. Since this overlapping area
has no corresponding lidar points for the last column of tiles
(they are already taken care of by the first column of tiles), it
should not be considered for intersections. Thus, the lower
limit is found as

Φlow =

{
⌊ ϕlow
Nϕ·resϕ

⌋ if ϕlow ≥ 0,

⌊ (ϕlow+360)−ϕmax
Nϕ·resϕ

⌋ otherwise,
(14)

and upper limit as

Φhigh =

{
⌈ ϕhigh

Nϕ·resϕ
⌉ if ϕhigh ≤ 360,

⌈ϕhigh (mod 360)
Nϕ·resϕ

⌉+Mϕ otherwise.
(15)

Given Φlow and Φhigh, the number of tiles covered horizon-
tally is Φhigh − Φlow. As for the image-case, Gaussians are
duplicated for each intersection and associated with a unique
identifier based on the intersecting tile and the depth of the
Gaussian. This unique identifier is used for global sorting.
However, before creating this identifier, the azimuth tile
coordinates of intersections are wrapped to [0,Mϕ)

Φlow, wrapped = (Φlow +Mϕ) (modMϕ), (16)
Φhigh, wrapped = (Φhigh +Mϕ) (modMϕ). (17)

For the elevation tile coordinates, we loop over the sorted
elevation boundaries and set Ωlow to the last boundary that is
smaller than ωlow and Ωhigh to the last boundary that is larger
than ωhigh.

A.2. Lidar points to rasterization points
During training and evaluation, we provide the azimuth and
elevation values used for rasterization based on the collected
lidar data. We begin by removing any ego-motion compen-
sation by expressing the lidar points’ coordinates relative to
the sensor pose at the time of capture. For this, we assume
a linear motion during the lidar scan’s capture. Next, for
each lidar point x = [x, y, z]T, we convert it to spherical
coordinates

xS =

ϕω
r

 =

 arctan2(y, x)
arcsin(z/r)√
x2 + y2 + z2

 . (18)

Each point is then mapped to a single tile, using the same
approach as for the Gaussians, while assuming that the extent
of each lidar point is zero.

In some cases, this process can assign slightly more than
256 lidar points to a tile. This occurs, for instance, if the

linear motion assumption for the ego-motion removal is
violated. During training, we shuffle points for each iteration
and discard any points beyond 256. For evaluation, we run
multiple rasterization passes and concatenate the results.

For tiles with less than 256 points, we still spawn 256
threads for rasterization. Similar to how threads that have
reached sufficient accumulation only help loading new
batches of Gaussians into shared memory, we use threads
without assigned lidar points for the same purpose.

B. Training details
In this section, we present details of our model and how we
train it.
Optimization: All parameters of our model are optimized
jointly for 30,000 steps, using the Adam [17] optimizer.
Learning rates for the different parameters are reported in
Tab. 6, and are scheduled using an exponential decay sched-
uler when applicable. Following [14], we start the optimiza-
tion with images 4 times smaller than the original resolution
and upsample with a factor of 2 after 3,000 and 6,000 steps.
Like [35], we optimize the pose parameters of all actor tra-
jectories but do not adjust the camera or lidar poses. The
same approach is applied to the baselines.
Initialization: Gaussians are initialized from a mix of lidar
points and random points. We use a maximum of 2M lidar
points for the static world and add 500 points, drawn ran-
domly within the box, for each actor. In addition to the lidar
points, we also initialize 60,000 Gaussians from random
points. Half of these points are sampled uniformly within
the lidar range. The other half is created from uniformly
sampled directions and distances sampled linearly in inverse
distance beyond the lidar range, up to a maximum distance
of 10 kilometers. Gaussians created from lidar points are
initialized with the color retrieved from projecting the point
into the closest image, while Gaussians created from random
points are initialized with random colors. The scale of a
Gaussian is initialized as 20% of the average distance to its
three nearest neighbors, and the opacity is initialized to 0.5.
Loss hyperparameters: Our model is optimized by min-
imizing Eq. (13) with λr = 0.8, λdepth = 0.1, λlos = 0.1,
λintens = 1.0, and λraydrop = 0.1. Except for λr, for which
we use the same value as in [14], all hyperparameters are
set heuristically. The MCMC loss in Eq. (13) is adapted
from [16] and consists of an opacity regularization term and
a scale regularization term

λMCMCLMCMC = λo

∑
i

|oi|+ λΣ

∑
ij

∣∣∣√eigj(Σi)
∣∣∣ , (19)

where we use λo = 0.005 and λΣ = 0.001. The line-of-sight
loss for Gaussians intersecting a lidar point p is implemented
as

Llos,p =
∑

ri<rp−ϵ

αi, (20)

Table 6. Learning rates (LR) for the different parameter groups.
Learning rate scheduling is done using exponential decay.

Parameters Initial LR Final LR Warm-up steps
Means 1.6e-6 1.6e-6 0
Features 2.5e-3 2.5e-3 0
Opacities 5.0e-2 5.0e-2 0
Scales 5.0e-3 5.0e-3 0
Quaternions 1.0e-3 1.0e-3 0
Sensor vel. linear 1.0e-3 1.0e-6 1000
Sensor vel. angular 2.0e-4 1.0e-7 1000
Cam. time to center 2.0e-4 1.0e-7 10000
Actor trajectories 1.0e-3 1.0e-4 2500
Sensor embeddings 1.0e-3 1.0e-3 500

where ri is the range of Gaussian i, rp is the range of the
lidar point p and ϵ = 0.8.

Densification strategy: We use the MCMC strategy in-
troduced in [16] with the same hyperparameters and the
maximum number of Gaussians set to 5M.

Features: In addition to the three color channels, our Gaus-
sians have associated features of dimension 13. We give the
sensor-specific embeddings a size of 8. The small CNN used
for decoding view-dependent effects consists of two resid-
ual blocks with a hidden dimension of 32 and kernel size
3, before a final linear layer. The MLP used for decoding
lidar intensity and ray drop probability is also lightweight,
consisting of only 2 layers and a hidden dimension of 32.

C. Baseline details

The three considered 3DGS-based baselines, PVG [6], Street
Gaussians [43], and OmniRe [7] are all implemented in the
open-source repository drivestudio [8]. We modify the
codebase to enable point cloud rendering by, as described
in [7], projecting lidar points into depth images, fetching
their depth, and projecting them into 3D.

To generate a point cloud, we place 6 virtual cameras,
each with a horizontal FOV of 60◦, in the lidar origin. The
cameras are rotated such that they collectively cover 360◦.
The focal length is set to the median horizontal focal length
of each dataset. This ensures that depth images are rendered
at a similar resolution as the models were trained on.

Next, the six depth images are rendered. Here, depth
refers to the α-blended z coordinate of Gaussians in camera
coordinates. For each lidar point, we project it into the depth
image and bilinearly interpolate the nearby pixel values. The
z-depths are then converted to ranges t by dividing their
values by the cosine of the angle between the direction of the
lidar point and the direction of the corresponding cameras
z-axis. The points are placed in 3D using the true lidar points
origins o and direction d as o+ dt.

D. Rolling shutter details
Our rolling shutter compensation is computed from approxi-
mated velocities in image space, referred to as pixel veloci-
ties. We assume the movement of a sensor C at time t to be
modeled by a linear velocity vC and an angular velocity ωC ,
expressed in the sensor’s coordinate system, as exemplified
in Fig. 6. For a static Gaussian i, expressed in the coordi-
nate system of this sensor, we can thus describe its velocity
relative to the sensor as

vC
i,static = −(ωC × µC

i + vC), (21)

where µC
i is the mean of the Gaussian, expressed in the

coordinate system of sensor C. Note that the sign of the
velocity is negative because we are interested in the velocity
of the Gaussian relative to the sensor.

If the Gaussian is associated with a dynamic actor, we
must also consider the velocity contribution induced by the
actor’s movement. To this end, we introduce the “actor co-
ordinate system”, which is aligned with the actor’s current
pose but at a fixed location and rotation in the world coordi-
nate system. For an actor modeled by a linear velocity vact
and an angular velocity ωact, as exemplified in Fig. 6, we
can describe the velocity of Gaussian i as

vact
i,dyn = ωact × µact

i + vact, (22)

where µact
i is the mean of the Gaussian, and all vectors are

expressed in the actor coordinate system. Further, we can
express this velocity in the coordinate system of sensor C
using the composition of the actor-to-world and world-to-
camera transforms, T act→C , as

vC
i,dyn = T act→Cvact

i,dyn. (23)

To account for both the velocity from the sensor and
the velocity from the dynamic actor, we combine the two
velocity sources. We add the velocity contributions together
and obtain the complete velocity of Gaussian i relative to
sensor C as

vC
i = vC

i,static + vC
i,dyn

= −(ωC × µC
i + vC) + T act→C(ωact × µact

i + vact).

(24)

Here, the transformed velocity from the dynamic actor re-
tains its sign as it is already relative to the sensor. Finally,
using the derivation in [31] for the derivative of pixel coor-
dinates with respect to camera motion, we obtain the pixel
velocity for Gaussian i projected into sensor C by multiply-
ing the result with the Jacobian of the projective transform

vI
i = JI(−ωC ×µC

i − vC + T act→C(ωact ×µact
i + vact)).

(25)

Actor coordinate
system

Camera coordinate system Pixel space

Figure 6. Visualization of an example of the components in the
pixel velocity equation.

E. Additional qualitative results

We provide additional qualitative comparisons for the NVS
task between SplatAD and our baselines for nuScenes
(Fig. 7), PandaSet (Fig. 8), and Argoverse 2 (Fig. 9). We
omit OmniRe from the comparisons, as its renderings closely
resemble Street Gaussians in most cases. Further, we show
a qualitative example of our lidar rendering (Fig. 10), high-
lighting our method’s ability to predict realistic intensity
values.

F. Evaluation details

Here, we present the dataset-specific details of our evaluation.
The same evaluation protocol is used for all datasets. For the
NVS task, we adopt a 50% split, i.e., using every other frame
for training and the remaining frames for hold-out validation.
In the reconstruction task, we train and evaluate using all
frames and lidar scans.
PandaSet: We use the complete sensor rig of six cameras
and one lidar when training and evaluating on PandaSet. We
crop out the bottom 260 pixels from the back camera to
remove views of the ego-vehicle. We choose the same 10
sequences as in [45] and [35]: 001, 011, 016, 028,
053, 063, 084, 106, 123, 158.
Argoverse2: For Argoverse2, we use the seven ring
cameras and both lidars. We crop out the bottom
250 pixels of the front center, rear left, and rear
right cameras to remove views of the ego-vehicle.
Again, we choose the same 10 sequences as [35]:
05fa5048-f355-3274-b565-c0ddc547b315,
0b86f508-5df9-4a46-bc59-5b9536dbde9f,
185d3943-dd15-397a-8b2e-69cd86628fb7,
25e5c600-36fe-3245-9cc0-40ef91620c22,
27be7d34-ecb4-377b-8477-ccfd7cf4d0bc,
280269f9-6111-311d-b351-ce9f63f88c81,
2f2321d2-7912-3567-a789-25e46a145bda,
3bffdcff-c3a7-38b6-a0f2-64196d130958,
44adf4c4-6064-362f-94d3-323ed42cfda9,
5589de60-1727-3e3f-9423-33437fc5da4b .

O
m

ni
R

e

Scene 104, img 11

Scene 104, img 11, vertical shift

O
ur

s
G

ro
un

d
Tr

ut
h

St
re

et
 G

au
ss

ia
ns

PV
G

Scene 61, img 27

N
eu

R
A

D

Figure 7. Qualitative NVS examples for nuScenes.

G
ro

un
d

Tr
ut

h
O

ur
s

N
eu

R
A

D
St

re
et

 G
au

ss
ia

ns
PV

G

Figure 8. Qualitative NVS examples for PandaSet.

G
ro

un
d

Tr
ut

h
O

ur
s

N
eu

R
A

D
St

re
et

 G
au

ss
ia

ns
PV

G

Figure 9. Qualitative NVS examples for Argoverse2.

Ground Truth Ours

Ground Truth Ours

Figure 10. Qualitative NVS example for our lidar intensity rendering. We illustrate a rendered point cloud painted with predicted intensity,
projected into and overlaid on the corresponding RGB image. The RGB image has been made darker and more transparent to highlight the
intensity colors.

nuScenes: We use all six available cameras and the
top lidar on the nuScenes dataset. The bottom 80
pixels of the back camera are cropped to remove any
views of the ego-vehicle. We select the following
10 sequences: 0039, 0054, 0061, 0066, 0104,
0108, 0122, 0176, 0180, 0193.

	Lidar rendering details
	Lidar tiling
	Lidar points to rasterization points

	Training details
	Baseline details
	Rolling shutter details
	Additional qualitative results
	Evaluation details

