
DejaVid: Encoder-Agnostic Learned Temporal Matching for Video Classification

Supplementary Material

Additional Implementation Details. VideoMAE V2-g
takes 16 frames of shape 224 → 224 as input and outputs a
length-1408 representation and then a length-Nc logit vec-
tor, where Nc is the number of classes in the dataset. Thus
the size of the encoder output Nf is 1408 + Nc. For De-
jaVid, we apply a temporal sliding window across the input
video, take the center crop, and resize to 224→ 224 to feed
into the encoder. This gives us a TSE of shape T →Nf for
some T . Then, for each action class, we randomly sample
50 TSEs, reshape each of them to Tc→Nf with linear inter-
polation, and then run 100 iterations of the DBA algorithm
[23] to produce the centroid.

We now describe our choice of the temporal sliding win-
dow widths and strides. For Kinetics-400 and HMDB51,
given a video, VideoMAE V2 temporally segments the
video into 5 clips of the same length and takes 3 crops at the
left, center, and right to produce 5 → 3 = 15 logit vectors,
from which they then take the mean to produce the class
prediction. Note that the temporal treatment is equivalent to
a sliding window of width |vid|

5 and stride |vid|
5 , where |vid|

is the video length. On the other hand, we only use the
center crop, but deploy a sliding window of width |vid|

5 and
stride |vid|

40 , so we produce (405 · (5↑ 1)+ 1)→ 1 = 33 logit
vectors per video, with the resulting TSE having dimension
33→Nf .

For Something-Something V2, unlike the other two
datasets, VideoMAE V2 does not temporally segment but
instead performs a strided slice on the frames with a step of
2. This means that the encoder is finetuned to an input win-
dow width of |vid|, which complicates our sliding window
application. The vast majority of Kinetics-400 videos are of
length ↓ 300 frames, but videos in Something-Something
V2 vary more in frame count, ranging from the teens to over
a hundred, which means its encoder window width varies
more too. In order to provide DejaVid with both constant-
width and variable-width information, we apply four sliding
windows with width {16, 32, 64, |vid|} and stride 1 in par-
allel, and thus obtain for each video a TSE of dimension
|vid| → (4 · (1408 + Nc)). The average video length in
Something-Something V2 is ↓ 40 frames, so on average,
we produce 4·40

33 = 4.8 times more embeddings per video
than for Kinetics-400 and HMDB51.
Applying DejaVid to non-SOTA video encoders.

Our algorithm is model-agnostic and can be applied to
other encoders. To demonstrate this, we apply DejaVid to
other encoders that are not SOTA. The results, as presented,
show a significant improvement. Here, we report as base-
lines numbers that the code on Hugging Face achieves on

our machine rather than the numbers from the original pa-
pers, which are somewhat higher.

Model Dataset
(Clips→
Crops)

Accuracy
without
DejaVid

Accuracy
with
DejaVid

facebook/timesformer-
base-finetuned-ssv2
@ huggingface [2, 6]

SSv2[16]
(4|vid|→
1)

55.5% 57.6%

google/vivit-b-
16x2-kinetics400 @
huggingface [3, 25]

K400[18]
(33 → 1)

62.4% 66.6%

Formulas for loss gradients ωLw
ωU and ωLw

ωC .
This section supplements Sec. 3.2 by proving the differ-

entiability of the Algorithm 2 neural network of DejaVid,
namely the detailed formulas for ωLw

ωU and ωLw
ωC , which are

omitted at the end of Sec. 3.2.
Recall from the end of Sec. 3.1 that we calculate the

time-weighted distance from a training or validation TSE
m to the centroid TSE Ci of each class i and then feed the
class-wise distances to soft-min for class prediction. We
first observe that before the soft-min, the distance calcula-
tions for each class are independent of each other; they do
not share any elements of C or U , nor do they have any
inter-class connections. So we can individually calculate
ωLw
ωU [c] and ωLw

ωC[c] for each class c, then stack them together
for the final ωLw

ωU and ωLw
ωC .

Note that ωLw
ωU [c] and ωLw

ωC[c] are the combination of three
components:

ωLw

ωU [c]
=

ωLw

ωDw[c]

∑

l

ωDw[c]

ωSC[c, l]

ωSC[c, l]

ωU [c]

ωLw

ωC[c]
=

ωLw

ωDw[c]

∑

l

ωDw[c]

ωSC[c, l]

ωSC[c, l]

ωC[c]

where l is the index of the diagonal, Dw ↔ RNc the
distance from m to the centroid of each class, SC[c, l] is
the l-th skip-connection for class c as in Algorithm 2, and
C ↔ RNc→Tc→Nf , U ↔ RNc→Tc→Nf

>0 are as defined in
Sec. 3.1. The following tackles each of the three compo-
nents respectively.

For ωLw
ωDw[c] , we use the standard cross-entropy and soft-

min, so the derivative is well-known to be:

ωLw

ωDw[c]
= y[c]↑ p[c]

where y is the one-hot ground truth vector and p[c] is the
predicted probability of class c.

For ωDw[c]
ωSC[c,l] , the standard trick for calculating loss gradi-

ents of a min-pooling layer is to define an indicator matrix.
Note that the l-th min-pooling layer for class c has length
↗SC[c, l]↗. Let R[c, l] of shape ↗SC[c, l]↗→↗SC[c, l↑ 1]↗
be the indicator matrix of the i-th min-pooling for class c.
We have:

R[c, l, a, b] =






1 if b ↔ {a↑ 1, a} and
the a-th output of the min-pooling
= the b-th input of the min-pooling

0 otherwise

And since the min-pooling layers are chained, we have:

ωDw[c]

ωSC[c, l]
=

l+1∏

i=n+m↑2

R[c, i]

Notably, ↗SC[c, n+m↑ 2]↗ = 1, so the matrix product
results in a shape of ↗SC[c, n + m ↑ 2]↗ → ↗SC[c, l]↗ =
1→ ↗SC[c, l]↗.

Finally, for ωSC[c,l]
ωU [c] , first notice that for any given

i, U [c, i] can only contribute to SC[c, l] at the entry
with distw(U [c, i], C[c, i],m[l ↑ i]). Denoting ωSC[c,l]

ωU [c] as
dUl[c] ↔ R↓SC[c,l]↓→Tc→Nf , we thus have:

dUl[c, i, j, f] =






|C[c, i+ start, f]↑m[j, f]|
if i+ start + j = l

0 otherwise

where start = max(0, l↑ dim0(m) + 1) is the offset for
the 0-th element of SC[c, l], as in Line 6 of Algorithm 2.

Similarly for ωSC[c,l]
ωC[c] , first notice that for any given

i, C[c, i] can only contribute to SC[c, l] at the entry
with distw(U [c, i], C[c, i],m[l ↑ i]). Denoting ωSC[c,l]

ωC[c] as
dCl[c] ↔ R↓SC[c,l]↓→Tc→Nf , we thus have:

dCl[c, i, j, f] =






U [c, i+ start, f] · sign(C[c, i+ start, f]↑m[j, f])

if i+ start + j = l

0 otherwise

which concludes the formulas for loss gradients ωLw
ωU and

ωLw
ωC . This demonstrates the differentiability of the Algo-

rithm 2 neural network of DejaVid, which enables optimiza-
tion via backpropagation.

	Introduction
	Related Work
	Method
	Definitions
	Parallelizability & Differentiability
	System Overview
	Modifications to Standard DTW

	Evaluation
	Datasets and Evaluation Metrics
	Implementation Details
	Main Results
	Ablation Studies

	Conclusion
	Future Work

