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Supplementary Material

Additional Implementation Details. VideoMAE V2-g
takes 16 frames of shape 224 x 224 as input and outputs a
length-1408 representation and then a length- NV, logit vec-
tor, where IV, is the number of classes in the dataset. Thus
the size of the encoder output Ny is 1408 + N.. For De-
jaVid, we apply a temporal sliding window across the input
video, take the center crop, and resize to 224 x 224 to feed
into the encoder. This gives us a TSE of shape T' x N for
some T'. Then, for each action class, we randomly sample
50 TSEs, reshape each of them to ;. X N with linear inter-
polation, and then run 100 iterations of the DBA algorithm
[23] to produce the centroid.

We now describe our choice of the temporal sliding win-
dow widths and strides. For Kinetics-400 and HMDBS51,
given a video, VidleoMAE V2 temporally segments the
video into 5 clips of the same length and takes 3 crops at the
left, center, and right to produce 5 x 3 = 15 logit vectors,
from which they then take the mean to produce the class
prediction. Note that the temporal treatment is equivalent to
a sliding window of width I”; | and stride ‘m |, where |vid]|
is the video length. On the other hand, we only use the
center crop, but deploy a sliding window of width @ and
stride 1214l 10 4 5o we produce (L. (5—-1)+1) x 1= 33logit
vectors per video, with the resulting TSE having dimension
33 x Ny.

For Something-Something V2, unlike the other two
datasets, VideoMAE V2 does not temporally segment but
instead performs a strided slice on the frames with a step of
2. This means that the encoder is finetuned to an input win-
, which complicates our sliding window
application. The vast majority of Kinetics-400 videos are of
length ~ 300 frames, but videos in Something-Something
V2 vary more in frame count, ranging from the teens to over
a hundred, which means its encoder window width varies
more too. In order to provide DejaVid with both constant-
width and variable-width information, we apply four sliding
windows with width {16, 32, 64, |vid|} and stride 1 in par-
allel, and thus obtain for each video a TSE of dimension
|vid| x (4 - (1408 + N.)). The average video length in
Something-Something V2 is ~ 40 frames, so on average,
we produce 419 = 4.8 times more embeddings per video

733
than for Kinetics-400 and HMDBS51.

Applying DejaVid to non-SOTA video encoders.

Our algorithm is model-agnostic and can be applied to
other encoders. To demonstrate this, we apply DejaVid to
other encoders that are not SOTA. The results, as presented,
show a significant improvement. Here, we report as base-
lines numbers that the code on Hugging Face achieves on

our machine rather than the numbers from the original pa-
pers, which are somewhat higher.

Model Dataset | Accuracy| Accuracy
(Clipsx | without | with
Crops) DejaVid | DejaVid

facebook/timesformer-{ SSv2[16]| 55.5% 57.6%

base-finetuned-ssv2 | (4|vid|x

@ huggingface [2, 6] | 1)

google/vivit-b- K400[18]| 62.4% 66.6%

16x2-kinetics400 @ | (33 x 1)

huggingface [3, 25]

Formulas for loss gradients % aL“’ and ‘%

This section supplements Sec 3.2 by prov1ng the differ-
entiability of the Algorithm 2 neural network of DejaVid,
namely the detailed formulas for 6Lw and aaLCw, which are
omitted at the end of Sec. 3.2.

Recall from the end of Sec. 3.1 that we calculate the
time-weighted distance from a training or validation TSE
m to the centroid TSE C; of each class 7 and then feed the
class-wise distances to soft-min for class prediction. We
first observe that before the soft-min, the distance calcula-
tions for each class are independent of each other; they do
not share any elements of C' or U, nor do they have any
inter-class connections So we can individually calculate

gz?[c] and 2 60[ ] for each class ¢, then stack them together
for the final aLw and aL &
Note that 3L‘“ and aL“’ are the combination of three

aU ] aCd]
components:

OLy  OLy ODy[c] 9SCe,l]
oU[c]  OD,[c] 0S5Clc,l] 90U
OL, 0Ly 0Dy [c] 8SCc,l]
0C[c] 0Dy 0SClc,1l] 90C|c]

where [ is the index of the diagonal, D,, € RY the
distance from m to the centroid of each class, SC|c,] is
the [-th skip-connection for class ¢ as in Algorithm 2, and
C € RNeXTexN; [ ¢ RN *TexNs are as defined in
Sec. 3.1. The following tackles each of the three compo-
nents respectively.

For aL“[’ 7> We use the standard cross-entropy and soft-

min, so the derivative is well-known to be:

Spe = ¥l sl




where y is the one-hot ground truth vector and p|c] is the
predicted probability of class c.

For 68 5%[5] , the standard trick for calculating loss gradi-
ents of a min-pooling layer is to define an indicator matrix.
Note that the /-th min-pooling layer for class ¢ has length
ISC|e, 1]||- Let R[e, 1] of shape || SCc, I]|| x ||SC[e, I —1]||
be the indicator matrix of the i-th min-pooling for class c.
We have:

1 ifbe{a—1,a}and
the a-th output of the min-pooling

R &) lv a, b] = . . .
| ] = the b-th input of the min-pooling

0 otherwise

And since the min-pooling layers are chained, we have:

I+1

ODylc] )
gocieq = 1l Rl

i=n+m—2
Notably, ||SC[c,n +m — 2]|| = 1, so the matrix product
results in a shape of ||[SC[c,n +m — 2]|| x ||SC]c, ]| =
1 x [|SCle, 1|
; 95C]c,] . .
Finally, for ~ould first notice that for any given
i, Ulc,i] can only contribute to SC]c,l] at the entry
with dist.,(Ulc, ], Clc,i], m[l — ]). Denoting 2361

U |[c]
dU;[c] € RISCIEUIXTexNy | we thus have:

as

|Cle,i + start, f] —ml[j, f]]
dUl[C7i,j7f]: 1f2—|-start+]:l
0 otherwise

where start = max(0, [ — dimg(m) + 1) is the offset for

the 0-th element of SCc, I, as in Line 6 of Algorithm 2.

Similarly for 8‘;33”, first notice that for any given

i, C[e,1] can only contribute to SC[c,!] at the entry
with dist,, (Ule, i], C[ec,i],m[l — i]). Denoting aggi%z],l] as

dC[c] € RISCIUIXTex Ny 'we thus have:

Ule, i + start, f] - sign(Clc, i + start, f] — m[j, f])
dCileyiy g, fl =< ifi +start+j =1

0 otherwise
which concludes the formulas for loss gradients aaL[}“ and
%. This demonstrates the differentiability of the Algo-
rithm 2 neural network of DejaVid, which enables optimiza-
tion via backpropagation.
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