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Model Base model Large model Search space
Start Layer 4 8 {0,1,2,...,23 }
End layer 12 24 {1,2,3,...,24 }
Iteration 10 {1,5,10,20}
Optimizer Adam {SGD, Adam}
Batch size 10 {1,5,10,20}
Learning rate 1 {0.1,0.5,1,10}
Trade-off parameter β 10 {0.1,1,10,100}

Table A. Hyperparameters selected in CoIBA. Except for the
start and end layer index, we unify the hyperparameters among
the base and large models.
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B. Relationship between I[Y ;ZL] and Cross-
Entropy Loss

Computation of the cross entropy H(Y ; Ŷ ) between the la-
bel Y and predicted label Ŷ can be considered as the con-
ditional cross entropy H(Y ; Ŷ |ZL) because ZL determines
the prediction. Here, ViT utilizes the imputed representa-
tion ZL to predict the label Ŷ . Such that, the conditional
cross entropy can be divided into conditional entropy and
KL divergence:

H(Y ; Ŷ |ZL) = H(Y |ZL)−H(Y ) +DKL[Y |ZL||Ŷ |ZL]

= H(Y |ZL) +DKL[Y ||Ŷ |ZL] .
(B)

Model Setting
Low-confident High-confident

0-20 20-40 60-80 80-100

ViT-B (s)

2-12 1.20/23.86 2.57/35.02 8.63/56.98 17.30/75.66
4-12 1.27/24.40 2.66/33.17 8.70/55.48 16.83/75.64
6-12 1.11/21.45 2.83/31.99 9.61/54.62 18.58/75.24
8-12 1.53/15.44 3.48/29.37 10.58/51.42 22.37/72.65

DeiT-B (s)

2-12 0.67/22.08 2.44/33.16 9.82/54.42 17.54/66.12
4-12 0.62/19.90 2.33/34.34 9.49/54.49 16.63/66.29
6-12 0.67/18.82 2.57/32.14 9.14/54.00 15.62/66.02
8-12 0.79/17.47 3.23/30.26 10.37/52.13 17.42/64.38

ViT†-B (s)

2-12 1.30/35.20 4.17/45.11 12.41/64.28 22.70/75.36
4-12 1.22/31.93 3.53/42.82 11.94/64.42 20.58/75.56
6-12 1.23/32.07 3.69/41.54 12.20/62.82 21.37/74.93
8-12 1.50/27.70 4.30/36.59 13.79/60.44 23.49/73.12

ViT-B (e)

4-6 4.17/13.04 3.92/25.56 13.12/47.93 27.88/62.34
4-8 2.85/11.94 3.14/28.94 10.09/52.79 19.18/74.24

4-10 2.81/17.34 2.85/29.77 9.04/54.17 16.86/75.66
4-12 1.27/24.40 2.66/33.17 8.70/55.48 16.83/75.64

DeiT-B (e)

4-6 1.49/14.19 5.66/25.92 18.60/44.53 36.85/50.18
4-8 1.30/18.34 3.76/18.34 14.12/40.51 25.10/50.75

4-10 0.86/20.92 3.32/33.47 11.49/52.65 19.40/64.56
4-12 0.62/19.90 2.33/34.34 9.49/54.49 16.32/66.29

ViT†-B (e)

4-6 2.89/17.21 7.27/34.18 22.30/55.61 40.42/63.98
4-8 2.14/25.92 5.27/39.92 15.11/60.99 25.95/73.52

4-10 1.21/29.02 4.17/41.50 12.87/63.30 22.19/75.31
4-12 1.22/31.93 3.53/42.82 11.94/64.42 20.58/75.56

Table B. Ablation study on departure (s) and arrival (e) layers.
The comparisons on interpolating the hyper-parameters from start
to end layers. The hyper-parameters used in CoIBA are filled with
a light gray color. We compare the quantitative results of the dis-
crepancy between insertion/deletion scores with different intervals
of confidence scores yielded by the model. The better-qualified at-
tribution map yields a higher discrepancy in insertion/deletion.

Model SA FFN Blocks

ViT-B-16/224 12.81/62.47 15.71/57.56 17.53/56.31
DeiT-B-16/224 11.59/53.86 13.41/51.12 13.53/52.39
ViT†-B-16/224 15.90/64.87 17.74/62.07 19.52/61.97

Table C. Quantitative comparison of the results produced by
placing bottleneck into various operations. This experiment
shows the correctness of the performance when inserting bottle-
necks into various operations, including self-attention (SA), feed-
forward network (FFN), and block between SA and FFN. We com-
pare 6,000 images randomly sampled from the IN-1k validation
dataset. ViT† denotes the model trained with CLIP.

Since mutual information between the bottleneck variable
of L-th layer ZL and the label Y can be expressed as:

I[Y ;ZL] = H(Y )−H(Y |ZL), (C)

where H(Y ) and H(Y |ZL) denote the entropy of Y and
conditional entropy of Y conditioned on ZL. Thus, we can
relate mutual information and conditional cross entropy as:



Model Accuracy
Com.

BI
Cor. Con.

mX
CSDC PC DC D SD TS

Chefer-LRP 97.6 91.1 91.2 89.4 89.7 99.8 73.9 95.8 86.6
Generic 97.6 91.0 90.8 89.6 89.6 99.8 74.2 98.5 87.6

IIA 97.6 89.2 87.6 88.0 90.7 99.8 76.4 98.6 84.1
ViT-CX 97.6 56.9 36.2 41.6 83.8 99.8 78.3 57.7 66.8

IBA 97.6 96.0 97.8 94.4 91.8 99.8 76.9 71.7 80.8
Beyond 97.6 87.8 84.8 84.8 84.1 99.8 75.8 92.9 84.5
CoIBA 97.6 93.5 94.2 91.4 91.3 99.8 79.0 98.2 89.8

Table D. Numeric detailed results of FunnyBirds experiment. We provide the detailed numeric results for the reported FunnyBirds
experiment. The mean explainability score (mX) is obtained by averaging Com., Cor., and Con. scores. The completeness score (Com.) is
obtained by averaging CSDC, PC, DC, and D scores.

I[Y ;ZL] = H(Y )−H(Y |ZL)

= H(Y ) +DKL[Y ||Ŷ |ZL]−H(Y ; Ŷ |ZL)

≥ −H(Y ; Ŷ |ZL) .
(D)

Here, we omit H(Y ) since it is constant. As
DKL[Y ||Ŷ |ZL] ≥ 0, minimization of the conditional cross
entropy increases the mutual information.

C. Experimental Settings

C.1. Model
We detail the settings for the experiments. We utilize the
timm library, which is a publicly accessible open-source
framework. We present all models by {name}–{depth}–
{patch size}/{image resolution}, e.g., ViT-B-16/224. All
the included ViT models are pre-trained with ImageNet-
21k. The models belonging to the DeiT family are pre-
trained with IN-1k, including DeiT3. We leverage Swin-B
with the settings of window size 7 and patch size 4. For
Swin2-B, we utilize the model with the settings including
the input resolution of 256 and window size 16. We de-
note the ViT∗ and ViT† as the models trained with massive
regression and CLIP, respectively.

C.2. Hyperparameters Selected in CoIBA
We provide quantitative comparisons against various hyper-
parameter settings. CoIBA includes the departure s and ar-
rival e layers and trade-off parameter β as a hyperparam-
eter to set. The overall hyperparameter settings chosen in
CoIBA are illustrated in Tab. A. We discuss the setting of
trade-off hyperparameter β in Sec. D.7.1 regarding the out-
of-distribution problem. We insert the bottleneck into the
preceding operation of the self-attention layer i.e., normal-
ization layer.
Departure and Arrival Layers We empirically select the
hyperparameter, which broadly yields the best correctness

performance. Tab. B illustrates the quantitative compar-
isons against various hyperparameter settings. As shown
in the results, including earlier layers for ViT yields an in-
creased performance in insertion/deletion. However, our
chosen hyperparameter shows enhanced performance in
ViT pre-trained with CLIP and DeiT models including
DeiT3. Referring to these results, we set 4 and 12 as depar-
ture and arrival layers, respectively, for base models. For
large models, we set 8 and 24 as departure and arrival lay-
ers, respectively.
Operation We compare the correctness scores by inserting
bottlenecks into the three types of operations: self-attention
(SA), feed-forward network (FFN), and intermediate blocks
between SA and FFN (Block). Tab. C shows the quantita-
tive results for these settings. As shown in the results, in-
serting the bottleneck before the SA layer yields the best
performance compared to inserting it before other opera-
tions.

D. Additional Quantitative Results
D.1. FunnyBirds Experiment
FunnyBirds assessment measures the faithfulness of an at-
tribution map with a comprehensive metric, including three
metrics: completeness (Com.), correctness (Cor.), and con-
trastivity (Con.). First, to assess Com., FunnyBirds assesses
the controlled synthetic data check (CSDC), preservation
check (PC), deletion check (DC), and distractibility (D).
These four metrics are averaged to compute the Com. score.
Second, evaluating Cor. includes a single deletion check
(SD) which measures the correlation between part impor-
tance and the predicted scores of the targeted class. Fi-
nally, Con. measures target sensitivity to directly measure
the sensitivity to a target class by assessing whether parts
of different classes are correctly identified as their respec-
tive class from a single image. The overall score is obtained
by averaging Com., Cor. and Con. scores. Tab. D shows
the full numeric results of the FunnyBirds experiment. As
shown in the results, CoIBA In particular, the outperform-
ing of CoIBA in terms of target sensitivity compared to IBA



Variant Model Chefer-LRP Generic IIA ViT-CX IBA Beyond CoIBA

SS*
ViT-B-16/224 (MAE) - 24.44/42.80 24.53/43.63 20.01/45.80 15.66/48.90 16.23/48.09 13.77/53.42
ViT-B-16/224 (Dino) - 7.62/50.42 7.46/50.52 14.09/45.55 8.91/49.45 8.12/50.23 6.83/53.68

BeiTv1-B-16/224 - 24.82/47.04 25.34/47.50 21.58/54.06 13.96/59.87 19.75/51.82 13.51/62.45

IN-A

ViT∗-B-16/224 - 2.46/25.99 2.68/25.37 4.41/23.97 2.34/25.52 2.27/26.29 1.82/32.62
ViT∗-L-16/224 - 3.99/32.74 3.95/32.29 4.40/33.64 3.19/34.86 3.10/35.36 2.53/41.07
ViT†-B-16/224 - 2.58/28.46 2.44/28.60 9.67/10.98 2.49/27.33 2.53/28.72 1.97/36.15
ViT†-L-16/224 - 4.19/37.82 4.01/38.13 7.49/34.45 4.27/35.77 4.16/38.12 3.25/42.74
EVA-L-14/196 - 7.58/39.96 8.79/38.48 6.60/41.71 4.50/44.68 4.54/43.57 3.65/50.41

IN-R

ViT∗-B-16/224 - 7.72/36.70 8.41/36.13 9.18/34.34 6.56/37.85 6.79/37.58 5.14/43.56
ViT∗-L-16/224 - 13.21/38.11 13.44/37.32 12.20/40.84 8.66/43.91 9.23/44.66 7.04/49.77

DeiT3-B-16/224 - 5.91/37.55 5.92/37.57 9.06/33.85 5.41/37.53 5.55/38.81 4.36/43.87
DeiT3-L-16/224 - 7.24/40.83 7.25/40.74 10.95/36.54 6.46/41.27 6.92/42.56 5.13/46.82
EVA-L-14/196 - 19.49/46.54 19.73/45.96 14.01/51.17 11.36/54.73 12.73/53.00 9.29/59.97

Table E. Quantitative feature importance assessment on insertion ↑ / deletion ↓. We denote SS∗ as ViT trained with self-supervised
learning [3, 4, 7] and ViT† as ViT trained with CLIP. ViT† and ViT∗ denote the ViTs trained with CLIP and massive regularization methods.
We additionally include EVA [6] for the comparison. We underline the state-of-the-art performance among the baselines.

demonstrates the ability of CoIBA in class-discriminative
ability.

D.2. Insertion/Deletion
We provide additional results of insertion/deletion in a wide
range of models and datasets. For the deletion test, we lever-
age the image filled with zero pixels as a baseline, indicating
a non-informative image. For the insertion test, we blur the
input image using the 2D Gaussian blurring method with
kernel size 51 and sigma 50. To demonstrate the general-
izability of CoIBA, we include the model pre-trained with
self-supervised learning and the results of IN-A and IN-R
datasets in Tab. E. As shown in the results, CoIBA provides
attribution maps with remarkable correctness scores com-
pared to the baselines. In particular, the correctness per-
formance in IN-A and IN-R indicate that CoIBA provides
attribution maps regardless of the difficulty of input sam-
ples.

D.3. Difficulty-aware Analysis
We provide the additional quantitative results of difficulty-
aware analysis. First, we provide the confidence scores
computed by the model per sample for different datasets
including IN-1k, IN-A, and IN-R. Second, we include the
quantitative results to demonstrate that CoIBA consistently
improves the correctness of resulting attribution maps for
various confident samples.

D.3.1. Distribution of Confidence Scores
Depending on the type of pre-trained parameters of the
models and datasets, the resulting confidence score per sam-
ple for the model is diversified. We provide the distribution
per sample about confidence scores in Fig. B. As shown in
the figure, massive samples in IN-1k lead the model to out-
put a high confidence score. In contrast to this, IN-R and
IN-A include numerous samples difficult to model. Thus,
amplified correctness scores in IN-A and IN-R demonstrate
the capability of CoIBA in generating explanations with a

high correctness score compared to the baselines.

D.3.2. Quantitative Results
In addition to the results presented in Sec. 4.5, we provide
the additional results in Fig. A. For IN-1k results, we in-
clude the ViT pre-trained with massive regression and CLIP
and DeiT3 models. For IN-A results, we include the same
models to provide the results. As shown in the results,

D.4. Sensitivity-N
The sensitivity-N [2] evaluates feature attribution assess-
ment by measuring the correlation. The sensitivity is mea-
sured between the sum of attributions corresponding to the
mask indices and the drop in model confidence caused by
the rest of the feature subsets. We leverage the Pearson cor-
relation coefficient (PCC) to measure the correlation. To
compute the sensitivity, we compute the condition over 100
different indices and average them over 1,000 image sam-
ples. We generate indices from 1 to 80% of the number
of pixels. Loosely speaking, sensitivity-N extends the sum-
mation over delta and completeness. Thus, the attribution
maps yielding the high sensitivity provide a faithful expla-
nation. We compare the sensitivity-N of the original and
enhanced ViT architecture. The quantitative results of the
sensitivity-N become visually distinguishable as shown in
Fig. C. Compared to the existing approaches, CoIBA pro-
vides faithful attribution maps after the 103 pixels are re-
moved.

D.5. Localization Assessment
To assess the localization ability of CoIBA compared to the
baselines, we compare the effective heat ratio (EHR) [9]
of the attribution maps yielded by different methods. This
EHR measures whether the explanation highlights object-
focused attribution. To this end, EHR computes the As
shown in Tab. F, the attribution maps provided by CoIBA
correctly highlight the foreground object. We include the
ViT and DeiT models additionally fine-tuned to concentrate
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(c) IN-R
Figure A. Difficulty-aware correctness assessment on insertion/deletion We measure differences in insertion/deletion (∆InsDel↑) scores
(higher is better). We fill the regions including low-confident samples and high-confident samples with red and blue, respectively, based on
the prediction made by the model.
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Figure B. Cumulative number of confidence scores per sample.
We compare the cumulative number of samples per different con-
fidence scores computed by the model. We include three datasets
including IN-1k, IN-A, and IN-R for the experiment.
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(d) DeiT3-L-16/224

Figure C. Quantitative results of Sensitivity-N. We compare the
results of Sensitivity-N against the base and large models. We
include the ViT and DeiT models. We plot the performance of
CoIBA with a solid line with red color.

the object [5]. The results show that CoIBA provides the
attribution maps that correctly highlight the human-labeled
bounding box. In particular, according to the results of
ViT-B-8/224, when the granularity of the attributions is in-
creased as the patch size of self-attention is decreased, the
CoIBA the significant performance in localization. These
results demonstrate that the overall attribution maps pro-



Model
Non-finetuned Finetuned [5]

ViT-B DeiT-B ViT-B DeiT-B

Chefer-LRP 0.277 0.252 0.297 0.274
Generic 0.229 0.203 0.285 0.232

IIA 0.256 0.239 0.293 0.271
ViT-CX 0.240 0.212 0.229 0.210

IBA 0.297 0.235 0.310 0.250
Beyond 0.252 0.216 0.263 0.208
CoIBA 0.248 0.269 0.253 0.281

(a) Non-finetuned model vs finetuned model [5]

Model
ViT∗ ViT†

ViT-B ViT-L ViT-B ViT-L

Chefer-LRP - - - -
Generic 0.200 0.103 0.247 0.226

IIA 0.107 0.110 0.237 0.234
ViT-CX 0.232 0.221 0.212 0.234

IBA 0.226 0.191 0.258 0.235
Beyond 0.286 0.218 0.225 0.205
CoIBA 0.300 0.265 0.305 0.304

(b) Varaints of training strategy

Model
Patch size Depth

8 32 ViT-L DeiT3-L

Chefer-LRP - - 0.236 -
Generic 0.169 0.143 0.173 0.297

IIA 0.201 0.150 0.176 0.304
ViT-CX 0.187 0.236 0.212 0.207

IBA 0.211 0.246 0.213 0.245
Beyond 0.202 0.243 0.201 0.207
CoIBA 0.272 0.263 0.247 0.334

(c) Variants of patch size and depth

Table F. Quantitative visual evaluation results of EHR. This
metric evaluates the localization capability of the feature attribu-
tion methods. We omit patch size and input resolution for simplic-
ity. For the variants of patch size, we utilize ViT-B-8/224 and ViT-
B-32/224. The robust [5] indicates the model is further fine-tuned
to focus on the foreground object. We denote ViT pre-trained with
massive regularization and CLIP as Reg and CLIP.

Model Acc. β = 0.01 β = 0.1 β = 1 β = 10 β = 100
ViT-B 81.8 100.0/86.6 100.0/90.2 98.8/88.8 15.2/13.4 1.4/0.6
DeiT-B 82.0 100.0/90.1 100.0/93.0 99.8/94.5 36.6/43.3 0.1/1.0

Table G. Quantitative comparison on various β settings. We
report top-1 accuracy per trade-off hyper-parameter setting β. We
divide correctly/incorrectly predicted samples.

duced by CoIBA correctly highlight the foreground object
in addition to the increased correctness performance.

D.6. Sanity Check
The sanity check [1] confirms whether the produced expla-
nations are sensitive to the model parameter. This exper-
iment measures the similarity of the attributions produced
with non-randomized and randomized model parameters.
We include two tests: cumulatively or independently ran-
domizing the parameters of each layer. For the cumulative
parameter randomization, we randomize the model parame-
ters after the 0, 3, 6, and 9 layers and measure the similarity
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Figure D. An analysis of parameter randomization test for san-
ity check. We utilize ViT-B-16/224 as the baseline architecture.
We measure SSIM for the attribution maps produced from differ-
ent indexed layers after randomization. The Fig. D (a) and D (b)
represent the comparisons of independent and cumulative param-
eter randomization tests, respectively.

Model IBA CoIBA
ViT-B-16/224 0.060 0.062
ViT-L-16/224 0.168 0.174

Table H. Comparisons of computational cost (sec) required to
generate an attribution map.

of the attributions produced. We select each attention layer
with interval 2 in an independent parameter randomization
test. We report quantitative results in Fig. D with exem-
plary results. We utilize 1,000 images randomly sampled
from the IN-1k validation dataset to measure the similarity
between attributions utilizing the SSIM metric. The dimin-
ished similarity in the results indicates that the attributions
are consistently obfuscated as the parameters of each layer
are randomized. Therefore, CoIBA is sensitive to the model
parameters, leading to yield faithful attributions to explain
the decision-making process. Furthermore, CoIBA is fairly
sensitive to all the layers within the model parameters as the
SSIM score results in uniformity across the layers.

D.7. Discussion
In this section, we provide further results included in
Sec. 4.6. We provide the quantitative results to show the
effectiveness of the variational upper bound. After that,
we provide the out-of-distribution caused by overly defined
trade-off hyperparameter β.

D.7.1. Out of Distribution and Over-compression
The trade-off hyperparameter β controls the degree of com-
pression related to the relevancy term in Eq. (8) The rele-
vant information is suppressed by setting excessive trade-
off hyperparameter β. In contrast to this, setting this hy-



perparameter overly small leads to leaving irrelevant infor-
mation in the activations. To empirically choose β, we an-
alyze whether the decision made by the model is corrupted
per compressing with different trade-off parameter settings.
As shown in Tab. G, setting β larger than 1 leads to over-
compression, vanishing the relevant information as well. In
contrast to this, setting β smaller than 1 diminishes the cor-
rectness performance of a resulting attribution map. These
results demonstrate the reasonability of our choice β = 1 in
dealing with the trade-off between relevancy and compres-
sion term.

E. Computational Cost
We report the computational cost while generating a single
attribution map for an input sample. We utilize NVIDIA
A6000 GPU to measure the computational time. As shown
in Tab. H, CoIBA requires a similar computational cost
compared to IBA. For example, IBA and CoIBA consume
0.06 and 0.062 (sec) for computing the attribution map.
Therefore CoIBA requires a significantly small computa-
tional cost, compared to dealing with a specific layer, There-
fore, a significantly small computational cost required by
CoIBA demonstrates that CoIBA significantly amplifies the
correctness of the resulting attribution map while requiring
a small computational cost.
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Figure E. Visualized attribution maps for IN-k produced from ViT. C-LRP indicates the Chefer-LRP method.
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Figure F. Visualized attribution maps for IN-k produced from DeiT-B and DeiT3-L.
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