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1. Limitation And Future Work

Our method relies on the quality and diversity of reference
images, which may limit its performance in real-world ap-
plications. In future work, we plan to replace it with a more
robust model, such as DiT, to improve results. Additionally,
our MSTed dataset primarily consists of “talk” type data,
and we aim to expand it by incorporating a variety of data
sources for better generalization and robustness.

2. Implementation

The training process consists of two steps: 1) Image train-
ing step: In this step, each video frame is preprocessed (e.g.,
sampling, resizing, and center-cropping) to a uniform reso-
lution of 512 x 512 pixels. This step involves 50,000 train-
ing iterations with a batch size of 32. 2) Temporal training
step: In this step, we train only the motion module while
freezing the other parameters. This step is conducted over
30,000 iterations with sequences of 12 frames and a batch
size of 8, focusing on motion learning .

In both steps, the learning rate is set to 1 x 10~°. We use
eight NVIDIA A100 GPUs for training. During inference,
users can input more than one reference image. To ensure
continuity over extended sequences, we employ a tempo-
ral aggregation method that integrates results from separate
batches, enabling the generation of longer video outputs.

During the training process, we select varying numbers
of reference images in each training step. In our MSTed
dataset, the maximum number of reference images used
during training is 5, while in the DyHumanDataset [4], it is
8. This approach allows our model to accept different num-
bers of reference images during the testing stage. Moreover,
we can accept more than 10 reference images during testing.

The the structure of pose encoder in pose correlation
moudle is the same as pose guider. The size of generated
correlation map is 32. In different layer of UNet, we resize
the correlation map to fit the size of refernece feature map
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and perform Eq. 3.

3. Metrics

In this work, we evaluate our method and compare it
with other methods on both pixel-level and feature-level.
We adopt five popular metrics: Peak Signal-to-Noise
Ratio (PSNR), Motion-based Video Integrity Evaluation
(MOVIE) [2], Learned Perceptual Image Patch Similarity
(LPIPS), Fréchet Video Distance (FVD), and £; distance.
Peak Signal-to-Noise Ratio (PSNR). PSNR is used to
measure the similarity between the generated frames and
ground truth frames at the pixel level. It is based on the
mean squared error (MSE). It can be formulated as:
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Here, M AX is the maximum possible pixel value, and
MSE is the average squared difference between the origi-
nal and generated frames.
Motion-based Video Integrity Evaluation (MOVIE). The
MOVIE metric can be utilized to evaluate both spatial and
temporal differences between frames. It quantifies how well
frames are interpolated and how smooth the transitions are.
It can be formulated as:
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where Iy and Iy, represent the frames of ground truth
videos and the generated videos, respectively. We can easily
find that lower MOVIE values indicate better video quality.
Learned Perceptual Image Patch Similarity (LPIPS).
LPIPS is designed to measure the similarity of two im-
ages in feature space, which is learned in a neural network.
Specifically, it focuses on perceptual quality rather than just
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pixel accuracy. Its formula is:

LPIPS(I%,, It,,) szHFz o) —Fillgen)|, 3

where F is the feature map from the [-th layer of the pre-
trained network, and w; is a predefined weight for the layer.
We can observe that smaller LPIPS values indicate better
perceptual similarity. In this work, we utilize a pre-trained
VGG [3] network as the feature extractor.

Fréchet Video Distance (FVD). FVD is an important met-
ric for video generation tasks. It measures the similarity
between generated videos and ground truth videos in fea-
ture space, considering both the average features and their
variability over time:
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where figen, and pg; are the means of the feature maps for
generated videos and ground truth videos, respectively. The
Ygen and Yy are the corresponding covariances. From the
above equation, lower FVD values indicate better realism
and smoother motion in the generated videos. Here, we
adopt the pre-trained I3D [1] network as the feature extrac-
tor.

4. Visualization

We provide video demos in the supplementary materials.
In these video demos, we compare our method with other
methods, and our method obviously achieves better results.
Additionally, we found that when some of the reference im-
ages provide more details, the results can be even more re-
alistic.
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