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6. Masked Diffusion Transformer for Image-
Based Virtual Try-On (MDT-IVTON)

This section gives further explanation of Sec. 3.1.

6.1. Patchified Latent Formulation
The Garment Agnostic Map, DensePose, and Garment Ag-
nostic Mask images have initial shapes of A,P,MX ∈
R3,h,w, where h and w are the height and width, and 3
corresponds to the RGB channels. This image is encoded
into the latent space by a VAE encoder, transforming them
into E(A), E(P ), E(MX) ∈ R4,H,W , where H = h/8 and
W = w/8. These are concatenated with the noised latent
representation zt ∈ R4,H,W , resulting in a combined tensor
R16,H,W .

This combined tensor is patchified into a representation
L ∈ Rp,D, with patch p = H·W

patch size2 and D is the hidden
layer embedding dimension. Positional embeddings ∈ Rp,D

are added to L, forming the final patchified latent representa-
tion. This representation undergoes denoising in the encoder
and decoder blocks of MDT-IVTON. Within these blocks, L
serves as the query in the cross-attention mechanism, inter-
acting with the condition c to incorporate garment-specific
information.

6.2. Condition Formulation
The garment image is processed through the Salient Re-
gion Extractor (SRE) and Image-Timestep Adaptive Feature
Aggregator (ITAFA) to obtain the garment feature Fg and
the salient region feature Fs. These features have shapes
Fg, Fs ∈ Rs,d, where s is the sequence length of the patch
tokens from the image encoder and d is the embedding di-
mension of the image encoder.

Both Fg and Fs are projected to align with MDT-
IVTON’s embedding dimension D, resulting in Rs,D. These
are then concatenated along the sequence dimension to form
R2s,D. Time embedding T ∈ RD is added to all sequences,
formulating the final condition c, which acts as the key and
value in the cross-attention mechanism to guide denoising in
MDT-IVTON.

6.3. Denoising Objective
The primary objective function minimizes the mean squared
error (MSE) between the predicted noise and the actual noise
in the noised latent zt at each timestep t, following the stan-
dard diffusion objective:

Ldenoise = Ezt,c,ϵ∼N (0,I),t

[
∥ϵ− ϵθ(zt, c, t)∥2

]
, (13)

where zt ∈ R4,H,W is the noised latent representation at
timestep t, c ∈ R2s,D is the condition, ϵ ∈ R4,H,W is the
Gaussian noise added during the forward diffusion process,
and ϵθ(zt, c, t) ∈ R4,H,W is the model’s predicted noise.
This objective guides the model to learn to reverse the for-
ward diffusion process.

6.4. Mask Reconstruction Objective
The Mask Reconstruction Objective operates on the masked
latent representation Lm, derived by applying a binary mask
ML ∈ Rp to the patchified latent L. The mask ML indicates
masked tokens with 0 and unmasked tokens with 1.

The Side-Interpolator reconstructs the masked tokens in
Lm by leveraging the semantic information from the un-
masked tokens as follows:
1. The unmasked tokens Lu ∈ Rpu,D, where pu is the num-

ber of unmasked tokens, provide semantic context.
2. The masked tokens Lm ∈ Rpm,D, where pm = p −

pu, are reconstructed by interacting with Lu in the Side-
Interpolator.

3. The reconstruction leverages an attention mechanism:
• Lm serves as the query, representing the masked tokens

requiring reconstruction.
• Lu serves as the key and value, encoding semantic and

spatial context from the unmasked tokens.
• Attention weights computed between Lm (query) and
Lu (key) determine how information from Lu (value)
is used to reconstruct Lm.

4. The output L′
m ∈ Rpm,D replaces the masked tokens in

Lm, forming a refined latent representation.
The reconstruction loss is computed as:

Lmask = Ey,c,t
[
∥L′

m − Lm∥2
]
,

ensuring spatial coherence and semantic consistency in
masked regions.

6.5. Inpainting Objective
The inpainting loss focuses on regions defined by the Gar-
ment Agnostic Mask MX . In the latent space, MX is en-
coded as E(MX) ∈ R4,H,W . Among its four channels,
the first channel, E(MX)0 ∈ RH,W , closely resembles the
binary mask and is used for loss computation, which is visu-
alized in Fig. 7

This channel is normalized to ensure numerical stability,
and the inpainting loss is calculated as:

Linpaint = Ey,c,t
[
∥E(MX)0 · (yt − yt−1)∥2

]
,



Figure 7. The top row visualizes the four normalized channels of
the Garment Agnostic Mask in the latent space. The bottom row
visualizes the corresponding four channels of the latent image, each
with the mask from the matching channel applied.

where yt, yt−1 ∈ R4,H,W are latent representations at con-
secutive timesteps. This loss emphasizes garment-specific
details in masked regions.

6.6. Overall Loss Function
The overall loss integrates denoising, mask reconstruction,
and inpainting objectives:

Ltotal = Ldenoise + Lmask + Linpaint.

This formulation balances global structure, spatial coherence,
and fidelity of garment-specific details, ensuring high-quality
virtual try-on results.

7. Image-Time Adaptive Feature Aggregator
(ITAFA)

This section elaborates on the ITAFA of Sec. 3.3 in detail.

Feature Complexity Components. Complexity compo-
nents for the input feature tensor f are calculated as below.

7.1. Feature Sparsity
S quantifies the proportion of near-zero activations in the
feature embeddings, providing insight into the sparsity of
structural activations within f . Given a threshold δ, sparsity
is defined as:

S =
1

H × s× d

H∑
i=1

s∑
j=1

d∑
k=1

I(|fijk| < δ), (14)

where H is the number of hidden layers of the image en-
coder, s is the sequence length of the patch tokens, d is the
embedding dimension, and I is the indicator function that
equals 1 when |fijk| < δ and 0 otherwise. This function
allows for counting the proportion of elements in f that are
below the threshold (i.e., near zero) providing a measure of
sparsity.

7.2. Feature Variance
V reflects the variability across activations, capturing struc-
tural complexity and richness of detail in f :

V =
1

H × s× d

H∑
i=1

s∑
j=1

d∑
k=1

(fijk − f)2 (15)

where f is the mean activation across all embeddings.

7.3. Gradient Magnitude
G measures local variations in feature embeddings by com-
puting spatial gradients along the sequence and embedding
dimensions. This component captures texture and fine de-
tails, calculated as:

∆fi,j,k =
√

(fi,j+1,k − fi,j,k)2 + (fi,j,k+1 − fi,j,k)2

(16)

G =
1

H × (s− 1)× (d− 1)

H∑
i=1

s−1∑
j=1

d−1∑
k=1

∆fi,j,k (17)

∆fi,j,k represents the gradient magnitude at each index
(i, j, k) in the feature embedding tensor. G then averages
the ∆f values over the entire feature embedding tensor to
capture the overall texture complexity.

The combined complexity score vector, [S, V,G] ∈ R3,
captures the structural and textural complexity of f .

8. Salient Region Extractor (SRE)
This section describes the SRE algorithm in detail, elaborat-
ing on Sec. 3.3.

8.1. Entropy Map Computation
The entropy map Xe provides a measure of the information
content for each pixel in the grayscaled version of the input
garment image, Xgray. The Shannon Entropy [33] is utilized
to capture local texture complexity and information density.

Local Neighborhood Definition. For each pixel
Xgray(i, j), we consider a local neighborhood of size 5× 5,
denoted as Ni,j , centered at pixel (i, j):

Ni,j = {Xgray(m,n) | i−2 ≤ m ≤ i+2, j−2 ≤ n ≤ j+2},
(18)

where the neighborhood is truncated near the image borders
to fit within the image dimensions.

Probability Distribution of Intensities. In each neighbor-
hood Ni,j , we count the frequency of each pixel intensity



value from 0 to 255, and calculate the probability pk of each
intensity value k as:

pk =
1

|Ni,j |
∑

(m,n)∈Ni,j

I(Xgray(m,n) = k), (19)

where |Ni,j | = 25 is the number of pixels in the neighbor-
hood, and I(·) is the indicator function that returns 1 if the
condition is true and 0 otherwise.

Shannon Entropy Calculation. The Shannon entropy
Hi,j for the neighborhood Ni,j is calculated as:

Hi,j = −
255∑
k=0

pk log2(pk), (20)

where pk represents the probability of intensity k within
the neighborhood. If pk = 0, the corresponding term is
considered zero, as pk log2(pk) = 0 for pk = 0.

Constructing the Entropy Map. The entropy map Xe is
constructed by assigning the computed entropy value Hi,j

to each pixel (i, j) in the image:

Xe(i, j) = Hi,j , (21)

resulting in an entropy map Xe ∈ RH×W that provides a
grayscale representation of the information content for each
pixel.

Interpretation of the Entropy Map. The resulting en-
tropy map Xe reflects the complexity of each region in the
image:
• High Entropy: Regions with higher entropy indicate

greater variability in pixel intensities, suggesting areas
with rich textures, edges, or details.

• Low Entropy: Regions with lower entropy represent uni-
form areas with little variation.

This process effectively highlights the most informative areas
of the input image.

8.2. High-Entropy Region Identification
To isolate regions of interest, a binary mask Xm is generated
by thresholding the entropy map with a pre-defined entropy
threshold E:

Xm(i, j) =

{
1 if Xe(i, j) > E,

0 otherwise.
(22)

The entropy threshold E is empirically set to 0.8. If no
high-entropy regions are detected, adaptive thresholding is
applied, gradually lowering the threshold until a region is
found or reaches a minimum value. If this adjustment fails.

8.3. Entropy Centroid Localization
The centroid (xc, yc) of the high-entropy region is computed
as the center of mass:

(xc, yc) =

∑
i,j Xm(i, j) · (i, j)∑

i,j Xm(i, j)
. (23)

If no high-entropy regions are found, the fallback behavior
sets the centroid to the image center, ensuring robustness in
cases of low entropy.

8.4. Circular Region Expansion
The region around the centroid is initially bounded by a
square of width and height lmin, set to 224, centered at
(xc, yc). lmin defines the minimum height and width of the
Salient Region to prevent overly small regions and extreme
aspect ratios. This bounding box expands outward in a
circular pattern (i.e., up, right, down, left), repeating this
sequence until no further expansion is needed. For each
direction, the algorithm checks whether the newly added
edge pixels contain more high-entropy pixels than a given
threshold to determine if expansion should continue.

8.5. Region Extraction
After the Circular Region Expansion, the bounding box is
adjusted to match the aspect ratio of the original image to
minimize distortion. The adjustment involves expanding ei-
ther the height or width, depending on the current bounding
box’s aspect ratio compared to the original Xgray. The final
Salient Region Xs extracted maintains the aspect ratio, pre-
serving visual consistency. By preserving the original aspect
ratio, the model can effectively perceive the salient region in
the context of the full garment, minimizing potential spatial
confusion. The extracted region is then resized to 224×224
to be processed as a diffusion condition.

9. Denoising with Classifier-Free Guidance
The denoising process employs Classifier-Free Guidance
(CFG) [12] to dynamically balance unconditional and condi-
tional noise predictions during each timestep t of the diffu-
sion process.

9.1. DDIM Sampling
The iterative denoising process is implemented using a
DDIM sampling loop, which refines the noisy latent rep-
resentation zt ∈ R4,H,W over a predefined number of dif-
fusion steps γsteps. At each timestep, the model predicts the
noise ϵt to compute the latent representation for the next
timestep zt−1:

zt−1 = DDIM(ϵt, zt, t, γsteps), (24)

where the process continues until z0, clean latent representa-
tion. The sampling loop iteratively combines conditional and



unconditional noise predictions using the guidance mecha-
nism described below.

9.2. Unconditional and Conditional Predictions
At each timestep t, the noisy latent representation zt is pro-
cessed by the denoising model ϵθ to produce two noise pre-
dictions:

ϵuncond = ϵθ(zt, t, ∅), (25)
ϵcond = ϵθ(zt, t, c), (26)

where ϵuncond ∈ R4,H,W is the unconditional noise prediction
generated without the condition c, and ϵcond ∈ R4,H,W is the
noise prediction with condition c informed.

9.3. Dynamic CFG Scaling
The classifier-free guidance scale αcfg determines the
strength of the conditional guidance, which is dynamically
adjusted at each timestep using a cosine-based power scaling
function:

δscale =

1− cos

((
1− t

γsteps

)βscale

· π
)

2
, (27)

where γsteps is the total number of diffusion steps, and βscale
is the power scaling factor. The intermediate scale factor
δscale ∈ [0, 1] ensures a smooth adjustment of guidance
strength, starting with weaker conditional emphasis in earlier
steps and gradually increasing its influence.

The effective guidance scale αeff for timestep t is com-
puted as:

αeff = 1 + (αcfg − 1) · δscale. (28)

9.4. Guided Noise Prediction
The final noise prediction ϵt is a weighted combination of
the unconditional and conditional predictions:

ϵt = ϵuncond + αeff · (ϵcond − ϵuncond), (29)

where ϵt ∈ R4,H,W .

10. Implementation Details
This section provides further details on the implementation
of the proposed model, as outlined in Sec. 4. The foun-
dational architecture for MDT-IVTON is derived from the
MDTv2 XL model, configured with a depth of 28 layers,
including 4 decoding layers, a hidden size of 1152, and 16
attention heads per layer. We utilize RGB images of size
512 × 512 × 3 as both the input reference images and the
generated output results. To ensure a fair comparison with
prior works, the Variational Autoencoder (VAE) from Sta-
ble Diffusion XL [26] is employed, encoding images into a
latent representation z with dimensions 64× 64× 4.

During training, we use 1000 diffusion steps, whereas 30
steps are used for the generation results reported in Table 1.
The mask ratio in the MDT training scheme is set to 0.3. For
optimization, we use an initial learning rate of 1×10−4 with
a batch size of 6. Training stability is enhanced through the
use of an Exponential Moving Average (EMA) with a rate of
0.9999. All other hyperparameters, including the optimizer
and learning rate scheduler, follow the configurations used
in DiT [24], ensuring consistency with existing diffusion-
based transformer approaches. For inference, the model is
evaluated using 30 sampling steps γsteps. The Classifier-Free
Guidance scale αcfg is set to 2.0, and the power scaling factor
βscale is set to 1.0. We report the performance of the model
trained for 2 million steps.

11. Dataset and Evaluation Metrics
This section gives details on datasets used and the evaluation
metrics, mentioned in Sec. 4. The VITON-HD dataset com-
prises 13,679 images of human models paired with upper
garment images, with person images provided at a resolu-
tion of 1024× 768. This dataset is widely used for virtual
try-on tasks and features relatively simple poses, where sub-
jects stand in straightforward, static positions with solid-
colored backgrounds. The simplicity of backgrounds and
poses makes VITON-HD an ideal testbed for evaluating the
model’s performance in basic virtual try-on scenarios.

The DressCode dataset offers a more diverse collection,
containing over 50,000 high-resolution images (1024× 768)
across three categories: upper-body garments, lower-body
garments, and dresses. Specifically, it includes 17,650 im-
ages of upper-body garments, 17,650 images of lower-body
garments, and 17,650 images of dresses. Similar to VITON-
HD, DressCode features consistent, simpler poses against
plain backgrounds. However, it includes a more diverse set
of garment styles, offering additional challenges in fitting
and transferring intricate patterns, logos, and textures ac-
curately during virtual try-on tasks. Both datasets serve as
benchmarks, with VITON-HD focusing on basic pose and
background handling, and DressCode testing the model’s
ability to preserve detailed garment features across various
clothing types.

To evaluate performance, we employ several widely-used
metrics in virtual try-on research. LPIPS (Learned Percep-
tual Image Patch Similarity) measures perceptual similar-
ity by comparing deep features from neural networks, with
lower LPIPS scores indicating greater perceptual closeness
to ground truth. SSIM (Structural Similarity Index) evaluates
the structural integrity of generated images by quantifying
similarity in luminance, contrast, and structure; higher SSIM
values indicate better preservation of the original structure.
FID (Fréchet Inception Distance) assesses quality and diver-
sity by comparing the feature distributions of generated and
real images, with lower FID values denoting closer align-



ment to real image distributions. We report both paired and
unpaired FID results. While FID is commonly used to assess
unpaired results in VTON task, paired FID is also infor-
mative as it directly compares generated images with their
corresponding ground-truth images, which does not exist for
unpaired generation.

12. Ablation Study

12.1. Analysis on ITAFA

For the learnable parameter α of Eq. (10) which controls the
balance between timestep information and image complexity
in the aggregation process, the final value of our final model
is 0.655. This indicates that the model emphasizes timestep
information, while still incorporating image complexity.

The image complexity distribution of the garments in
VITON-HD dataset and DressCode dataset are organized in
Table 2.

Data Sparsity Variance Gradient
Avg. Std. Avg. Std. Avg. Std.

V-HD 0.125 0.011 1.139 0.077 0.462 0.013
DC-U 0.127 0.010 1.156 0.081 0.459 0.015
DC-L 0.128 0.008 1.161 0.065 0.450 0.014
DC-D 0.129 0.008 1.157 0.057 0.456 0.015

Table 2. The V-HD, DC-U, DC-L, and DC-D denote the VITON-
HD, DressCode Upper-body subset, Lower-body subset, and
Dresses subset, respectively. Avg. and Std. denote the average and
standard deviation of the values, respectively.

The results highlight subtle differences between the
VITON-HD and DressCode datasets, particularly for upper-
body garments. DressCode garments exhibit slightly higher
sparsity and variance compared to those in VITON-HD, sug-
gesting that individual garments in DressCode may contain
patterns with relatively greater complexity, such as logos
or prints, which contribute to increased pixel intensity vari-
ations. In contrast, the lower average gradient magnitude
in DressCode samples indicates that these patterns often
have smoother transitions or softer boundaries, likely due to
similar colors between garments and their prints or repeti-
tive designs with subtle changes. Meanwhile, the relatively
higher gradient values in VITON-HD garments suggest that
they may include simpler, more distinct patterns, such as
large logos with sharp edges and contrasting colors.

Although the differences exist, they are subtle. The simi-
lar garment complexity across the datasets explains the small
gap in FID scores between the VITON-HD and DressCode
Upper-body datasets in Table 1. The performance of our
model on DressCode dataset, including Lower-body and
Dresses, are shown in Table 3.

Subset LPIPS↓ SSIM↑ FID(p./unp.)↓

Upper-body 0.034 0.951 5.412/10.069
Lower-body 0.052 0.931 6.109/12.335
Dresses 0.080 0.883 6.957/10.662

Table 3. Performance of our ITA-MDT on three subsets of Dress-
Code dataset. p. and unp. denotes paired and unpaired generation
evaluation, respectively.

12.2. Analysis on SRE
Figure 8 illustrates examples of the Entropy Map Xe and
the corresponding extracted Salient Region Xs from a given
garment image X . When no dominant high-entropy cluster
is detected, such as solid-colored and uniformly patterned
garments, SRE tends to extract a broader region or even
the entire garment, as shown in Figure 10 (right). While
this may seem less selective, it remains beneficial by re-
ducing background region, capturing the full garment with
higher-resolution information that enriches local detail rep-
resentation. Examples of such cases are shown in Figure 9.

A potential concern is whether high-entropy elements
such as wrinkles (possibly irrelevant to the target garment)
might be mistakenly emphasized. However, in the virtual
try-on setting, garments are photographed under controlled
conditions, where such elements are likely part of the in-
tended design. As a result, our entropy-based method re-
mains robust for this task. Figure 10 (left) shows that SRE
performs well even on garments with wrinkles, using both
dataset and real-world examples.

To accelerate training and evaluation, Salient Regions
were preprocessed in advance. The SRE process averaged
about 1.563 seconds per image in our experimental environ-
ment.

12.3. Analysis on Mask Reconstruction Objective
The mask reconstruction objective of the Masked Diffusion
Transformer (MDT) with its Side-Interpolator module is
the key component that transforms a Diffusion Transformer
(DiT) into an MDT. The impact of the mask reconstruction
objective on training efficiency and performance is illus-
trated in Figure 11. The figure compares the early training
progression of our ITA-MDT with and without the mask
reconstruction objective. The mask reconstruction objective
produces a steeper learning curve, indicating faster conver-
gence.

12.4. Analysis on Sampling Steps
The number of sampling steps γsteps used during inference
directly influences the trade-off between inference speed and
the quality of generated results. Table 4 highlights this trade-
off. Higher γsteps leads to improvement in FID but slight
degradation in SSIM and LPIPS. This discrepancy may have



Figure 8. Garment image X with its Entropy Map Xe and its Salient Region Xs extracted with our Salient Region Extractor. Images are
from the upper-body, lower-body, and dresses subset of the DressCode dataset.

Figure 9. Results with and without Salient Region (SR).

Figure 10. Salient Region Extractor (SRE) outputs: E. Map and
SR refer to Entropy Map and Salient Region, respectively. Red box
indicates wrinkled regions.

arisen because higher sampling steps refine fine-grained tex-
tures, which improve perceptual quality captured by FID,
but may slightly alter pixel-level structural consistency, af-
fecting SSIM and LPIPS. Additionally, the longer sampling
trajectory may have introduced small deviations in structure
as the latent representation evolves.

While we balance these factors by using γsteps = 30,

FI
D
↓

SS
IM

↑

10k              20k             30k              40k             50k 10k              20k             30k              40k             50k

Training Steps Training Steps

Figure 11. Comparison of training efficiency between ITA-MDT
with and without the mask reconstruction objective with side-
interpolator of Masked Diffusion Transformer(MDT). Evaluated
with VITON-HD paired.

a reduction of γsteps can be considered for accelerated use
cases where inference speed is prioritized over marginal
improvements in perceptual quality.



γsteps Inf. Time (s) LPIPS↓ SSIM↑ FID↓
20 3.207 0.084 0.888 5.799
25 3.912 0.084 0.888 5.594
30 4.606 0.083 0.885 5.462
35 5.284 0.083 0.885 5.355
40 5.951 0.083 0.885 5.322
45 6.938 0.083 0.884 5.347
50 7.427 0.084 0.884 5.293

Table 4. Trade-off between sampling steps (γsteps), Inference Time
(Inf. Time), and image quality metrics on VITON-HD paired
evaluation. Note that the optimal classifier-free guidance scale αcfg

and power scaling factor βscale of our model were determined using
γsteps of 30.

13. Qualitative Results and Comparison
We provide a detailed overview of the qualitative results of
our ITA-MDT framework and its comparison to previous
methods, highlighting its superior fidelity in capturing the
texture and color of the garments.
• Figure 12: Qualitative comparison of the effect of each

component of the ITA-MDT framework on VITON-HD.
• Figure 13: Qualitative comparison between our ITA-MDT

and previous methods on the VITON-HD.
• Figure 14: More qualitative comparison between our ITA-

MDT and previous methods on the VITON-HD.
• Figure 15: Qualitative comparison between our ITA-MDT

and previous methods on the DressCode Upper-body.
• Figure 16: More qualitative comparison between our ITA-

MDT and previous methods on the DressCode Upper-
body.

• Figure 17: Qualitative results of our ITA-MDT on the
DressCode Upper-body.

• Figure 18: Qualitative results of our ITA-MDT on the
DressCode Lower-body.

• Figure 19: Qualitative results of our ITA-MDT on the
DressCode Dresses.



G. Agn. Map Garment MDT-IVTON (Base) Base + ITAFA Base + ITAFA + HR Base + ITAFA +SRE

Figure 12. Qualitative comparison of the effect of each component of the ITA-MDT framework on VITON-HD. HR refers to the use of
single High-resolution (448× 448× 3) garment image to formulate condition vector c.



Figure 13. Qualitative comparison between our ITA-MDT and previous methods on the VITON-HD.



Figure 14. More qualitative comparison between our ITA-MDT and previous methods on the VITON-HD.



Figure 15. Qualitative comparison between our ITA-MDT and previous methods on the DressCode Upper-body.



Figure 16. More qualitative comparison between our ITA-MDT and previous methods on the DressCode Upper-body.
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Figure 17. Qualitative results of our ITA-MDT on DressCode Upper-body.
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Figure 18. Qualitative results of our ITA-MDT on DressCode Lower-body.
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Figure 19. Qualitative results of our ITA-MDT on DressCode Dresses.


