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Supplementary Material

A. Score Distillation as Particle-Based Variational Inference
Our parameter perturbation and identity gradients build upon the mathematical intuition of the variational score distillation
(VSD) approach [15], an extension of score distillation sampling (SDS) [10]. In this context, the parameters of NeRF during
distillation are treated as particles.

VSD minimizes the KL divergence between a variational distribution qγ(x|c), which is implicitly modeled by γ, and the
target distribution pϕ(x|c), which is implicitly modeled by the diffusion model ϕ. Incorporating timesteps and camera poses,
the objective is formulated as follows:

γ∗ := argmin
γ

Et,ψ
[σt
αt
w(t)DKL(q

γ
t (xt|c, t)∥pϕ(xt|c, t))

]
(1)

where σt

αt
and w(t) are diffusion-related weighting factors, and qγt (xt|c, t) and pϕ(xt|c, t) represent the distributions of

noisy images to be modeled by diffusion models.
To minimize this objective, VSD employs particle-based variational inference based on Wasserstein gradient flow, as

detailed in [1, 2, 8, 14]. Specifically, the Wasserstein gradient flow satisfies:

∂γτ
∂τ

= ∇ · (γτ∇(
∂E

∂γτ
(γτ ))) (2)

In our case, the energy functional E is defined as follows:

E(γ) := Et,ψ
[σt
αt
w(t)DKL(q

γ
t (xt|c, t)∥pϕ(xt|c, t))

]
(3)

In the particle-based variational inference, particles represent samples from the variational distribution. A set of M
particles {θ(i)}Mi=1 ∼ γ is iteratively updated following the velocity of particles [1]: dθτ

dτ = ∇( ∂E∂γτ (γτ )). With the energy
function in Eq. 3, the particles follow the ordinary differential equation (ODE):

dθτ
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=− Et,ϵ,ψ
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γτ
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∂θτ

)]
(4)

where τ denotes the ODE time, constrained to τ ≥ 0, and γτ progressively evolves toward the optimal distribution γ∗ as
τ → ∞. In this VSD framework, the gradient of the SDS loss is a specific instance of the equation [15], where a single
particle represents the entire distribution.



B. Resulting Distribution from Parameter Interpolation (Sec. 4.1)
Here, we show that interpolating parameters with η ∈ [0, 1] results in a versatile sampling distribution that interpolates
between a point mass at θsrc and the initial distribution. Given a source parameter θsrc and an initial distribution P(Θ0) with
bounded variance σ2, we define the parameter perturbation as:

θperturbed = (1− η)θsrc + ηθ0, θ0 ∼ P(Θ0), η ∈ [0, 1] (5)

Using the change of variables formula with transformation T (θ0) = (1 − η)θsrc + ηθ0 and its inverse T−1(θperturbed) =
(θperturbed − (1− η)θsrc)/η:

p(θperturbed) = P(Θ0)(T
−1(θperturbed)) · | det(JT−1)| (6)

Since the Jacobian matrix is JT−1 = 1
η Id, where Id is the d-dimensional identity matrix, we have:

p(θperturbed) =
1

ηd
P(Θ0)

(
θperturbed − (1− η)θsrc

η

)
(7)

Here, η controls the degree of interpolation through both a scale factor 1
ηd

and the argument (θperturbed − (1 − η)θsrc)/η of
P(Θ0).

For η → 1, both terms approach simple limits:

lim
η→1

p(θperturbed) = lim
η→1

1

ηd
P(Θ0)

(
θperturbed − (1− η)θsrc

η

)
(8)

= P(Θ0)(θperturbed) (9)

For η → 0, we consider the distribution of θperturbed. By Chebyshev’s inequality, for any ε > 0:

P (|θperturbed − E[θperturbed]| ≥ ε) ≤
η2σ2

ε2
→ 0 as η → 0 (10)

Moreover, since E[θperturbed]→ θsrc as η → 0:

P (|θperturbed − θsrc| ≥ ε)→ 0 as η → 0 (11)

This proves convergence in probability to θsrc. The 1
ηd

factor ensures that the total probability remains 1, while the concen-
tration around θsrc becomes arbitrarily tight as η → 0, characterizing convergence to:

lim
η→0

p(θperturbed) = δ(θperturbed − θsrc) (12)

Thus, we have shown that the interpolation of parameters results in an interpolation between two extremes: a point mass
at θsrc and the initial distribution, and the parameter η controls the degree of interpolation, i.e., the versatility.



Algorithm 1: Parameter Perturbation

Function ParameterPerturbation(η):
θnew ← Initialize new geometry instance
for (θc, θn, θi) in zip(θcurrent, θnew, θinit) do

θc ← (1− η)θi + ηθn // Parameter interpolation
end
Free memory and clear cache

Algorithm 2: Parameter Perturbation with Adaptive η Selection
Input: Empty loss history list L, minimum loss decrease ∆min, maximum parameter perturbation ηmax
Input: Initial NeRF parameters θinit
Function TrainingStep:

if |L| = 50 then
∆L ← LossDecrease(L)
η ← DetermineEta(∆L, ∆min, ηmax)
ParameterPerturbation(η)

end
Proceed with training step
L ← L⊕ {Current step training loss}

Function LossDecrease(L):
Lfinal ← 1

10

∑|L|
i=|L|−10 Li // Average of last 10 losses

Linit ← 1
10

∑10
i=1 Li // Average of first 10 losses

return Lfinal − Linit

Function DetermineEta(∆L, ∆min, ηmax):
return max(0, ηmax(1− 2−(∆L+∆min)/∆min))

C. Algorithms for Parameter Perturbation and Adaptive η Selection
We present the complete algorithms for parameter perturbation in Alg. 1 and the adaptive η selection method in Alg. 2.
The underlying intuition for the adaptive η selection algorithm is that there exists a minimum loss decrease ∆min required
for parameter perturbation and a maximum parameter perturbation ηmax that can be applied without resulting in complete
regeneration of the object. Here, we have two parameters to control, ∆min and ηmax. ∆min is set to 1000 based on observations
that it achieves near-optimal CLIP directional similarity and CLIP directional consistency, as shown in Table 1. ηmax is set to
0.6 based on the finding that the percentage of successful experiments drops significantly when η exceeds 0.6, as shown in
the main paper.
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Figure 1. Original scene, edited scene, and image-level gradients are shown at 0, 2500, and 5000 optimization steps. We can see that the
density forms earlier and changes drastically even when the perturbation is large and barely has any structure.

D. Additional Analyses

Intermediate results from real scene editing. In Fig. 1, we show intermediate results from a real scene editing experiment.
In this experiment, we aim to make the person raise the arms. Despite the initialization having little 3D structure, it converges
faster with the same number of optimization steps. We can see that the density near the raised arms quickly converges
with parameter perturbation, while the original PDS [6] generates blurry results. This demonstrates the effectiveness of our
parameter perturbation approach in various editing scenarios.

Additional ablation study. We present additional ablation study results on ∆min in Table 1. Additionally, we examine
the effects of different values for λL1 and λp in Table 2. Our results demonstrate that our method is relatively robust to
these parameters, with our chosen values achieving a near-optimal balance across metrics. In addition, in Fig. 6, we display
additional visualizations for the selection of η. A-LPIPS [4] is a metric for view consistency between adjacent frames, and
CLIP directional consistency [3] is a metric that computes how much the editing directions differ across frames. Considering
that we showed in the main paper that using fixed values of η ≥ 0.6 had a higher likelihood of causing errors, our method
outperforms approaches using fixed values of η < 0.6 in both metrics while maintaining lower error rates.

Additional comparisons. In Figs. 4 and 5, we showcase additional comparisons with the baseline methods.

Comparisons in 360° views. We present qualitative comparisons with 360° views on our project page.



Method CLIP-Dir-Simaveraged↑ CLIP-Dir-Conaveraged↑ LPIPSaveraged↓

∆min = 500 0.061 0.757 0.112
∆min = 1000 0.062 0.757 0.115
∆min = 2000 0.060 0.754 0.111

Table 1. Experiment controlling ∆min.

Method CLIP-Dir-Simaveraged↑ CLIP-Dir-Conaveraged↑ LPIPSaveraged↓

λL1 = 10000, λp = 100 0.057 0.777 0.115
λL1 = 30000, λp = 300 0.057 0.764 0.105
λL1 = 50000, λp = 500 0.051 0.752 0.091

Table 2. Experiment controlling λL1 and λp.

Source 3D Object

w/o Refinement

w/ Refinement

Source 3D Object
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Figure 2. Effects of IPG refinement steps. IPG refinement steps restore changed attributes that were not explicitly mentioned in the edit
prompt during the editing process, for example, the support part of the strap and the subtle details in the color and texture of the tuxedo.

Effect of IPG. In Fig. 2, we demonstrate refinement outcomes through IPG and the generative ODE. A notable IPG attribute
is its preservation of areas in the 3D object not explicitly specified for modification within the editing prompt.

Figure 3. 3DGS experiment. The perturbation approach
improves the depth map and overall geometry of the
resulting object.

Extension to 3DGS. Adapting our method to 3DGS [5] presents
unique challenges, particularly in addressing adaptive densification
and the ill-defined interpolation of initial and optimized Gaussians.
However, our preliminary experiment, based on 3DGS generated
by LucidDreamer [7], with mean and variance perturbation shows
promising results, yielding improved depth maps and geometry un-
der identical conditions (Fig. 3).

E. Implementation Details

Optimization steps. For all perturbation values, we perform 1.5k
editing steps, significantly fewer than the 10k steps required for re-
generation [12]. We set a resolution milestone in fashion object edit-
ing at which the rendering resolution changes for efficacy to half the
number of editing steps. We perform 1k additional refinement steps,
making the total runtime similar to 1.5k steps of PDS and thus highly
efficient.

Identity-preserving gradients. For the identity-preserving gradients in Sec. 4.3, we adopt a combination of perceptual and
L1 losses, finding this more stable and less fragile to noise than using only L1 or L2 loss. Specifically, we choose λL1 = 300.0



Source 3D Object Instruct-NeRF2NeRF Perturb-and-Revise (Ours)Posterior DistillationScore Distillation

“a DSLR photo of a pair of golden pointed-toe, d'Orsay flats with roses”

“…, holding a champagne flute”

“… with his arms crossed …”

“… a black leather jacket with a sherpa lining …”

Figure 4. Additional comparisons of fashion object editing with Score Distillation [10], Posterior Distillation [6], Instruct-NeRF2NeRF [3],
and Perturb-and-Revise (ours).

and λp = 30000.0, with an annealed schedule, i.e., we linearly decrease them to 0 until the halfway point of the steps. We
present an ablation study on the scales of λp and λL1 in Table 2.

Timestep annealing. In the original Score Distillation [10], Instruct-NeRF2NeRF [3], and Posterior Distillation [6] papers,
a fixed schedule, Σ := U(0.02, 0.98), is utilized. Contrary to this fixed schedule, and considering that our editing purpose
does not inherently start from random parameters, we adopt a schedule in which Σ(0) = U(0.75, 0.75), a range to be
decreased to (0.02, 0.4) by the time 80% of the total editing steps are reached.

NeRF representation. Technically, the parameter perturbation method can be applied to arbitrary representations whose
parameters are initialized from a distribution and optimized. For computational efficiency while maintaining high quality of
3D objects, we choose InstantNGP [9] as our NeRF implementation.

Real scene editing. We show in the main paper that our parameter perturbation approach can be readily extended to real
scene editing scenarios [3]. Using Nerfstudio’s implementation of Nerfacto [13] as the representation, we integrate Instruct-
NeRF2NeRF [3] without modifications. For this experiment, we build upon the distillation method proposed in PDS [6],
use Stable Diffusion v1-5 [11] as the backbone, and set η = 0.6. Besides the perturbation, we use the exact same update
rule as PDS. We reduce the timesteps by half and omit the selection and refinement steps for both PDS and our method to
manage computational complexity and to show only the effect of the parameter perturbation approach. Note that PDS has an
internal preservation term [6], and we use it as is for scene editing. Even with these shortened iteration steps, our parameter
perturbation approach enables extensive geometric editing of the scene.



“a firefighter axe”

“a red emergency rescue drone with a large gimbal camera”

“a stone pagoda consisting of granite”

Source 3D Object Instruct-NeRF2NeRF Perturb-and-Revise (Ours)Posterior DistillationScore Distillation

“a knight wearing armor on a dragon”

Figure 5. Additional comparisons of general object editing with Score Distillation [10], Posterior Distillation [6], Instruct-NeRF2NeRF [3],
and Perturb-and-Revise (ours).
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Figure 6. Additional visualizations for the selection of η. (a) and (b) show the A-LPIPS (lower is better) and CLIP directional consistency
(higher is better) for different η values, respectively.

“... a green dress” “... a black alien car” “… a tube of lipstick beside it”

Figure 7. Failure cases.

F. Computational efficiency
Our approach requires approximately 7 minutes with IPG and 4 minutes without, to produce meaningful results. This is faster
than the 13 minutes needed for Instruct-NeRF2NeRF. We attribute this to Instruct-NeRF2NeRF requiring updates to the entire
dataset, while our method of parameter perturbation and timestep annealing benignly affects the optimization process of an
object. Note that completely regenerating an object requires around 26 minutes.

G. Limitations
Although we address limitations of previous work, our method inherits some limitations from pre-trained diffusion models
[11, 12], such as color biases and saturation artifacts (Fig. 7). While our method can handle pose and object changes,
the compositionality issue of the pre-trained models, which often cannot generate compositions of two or more objects or
attributes, is another problem, making our method difficult to accommodate changes to the entire layout.

H. Discussion and Future Work
Perturb-and-Revise (PnR) is a training-free editing method that is fast and effective, opening up new possibilities. The main
point of the paper is that parameter perturbation is of prime importance in achieving these results. This approach can be
compared to SDEdit (Meng et al., 2021), which injects Gaussian noise for image editing and is commonly adopted in many
image editing pipelines. Indeed, PnR demonstrates that similar yet general principles can be applied in parameter space for
3D editing.

While PnR currently focuses on static 3D scenes, future research could extend the proposed methods to 4D neural fields
representing dynamic scenes. This extension would enable powerful video editing applications, such as modifying the motion
of objects or characters in a 3D-consistent way while preserving their appearance and physical plausibility.
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