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Figure 1. Detailed architecture of the VAE network. Separation and concatenation of tensors are performed with respect to the joint
dimension.

A. Network Architectures

In this section, we provide a detailed explanation of the net-
work architecture. The code is available at github.

A.1. Skeleto-temporal VAE

We visualize the detailed architecture of the VAE network in
Figure 1. Given a motion sequence m, we first decompose
it into joint-wise features:

m = {m1, . . . ,mJ},

where mj ∈ RN×Dj . Here, N denotes the number of
frames and Dj represents the number of features of joint j,
which varies depending on the joint. Specifically, Dj = 7
for the root joint, as it includes 1-dimensional height, 2-
dimensional translational velocity on the horizontal plane,
1-dimensional angular velocity around the up-axis, and 3-
dimensional velocity. For the foot and toe joints, Dj = 13,
comprising 3-dimensional local positions and velocities, 6-
dimensional local rotations, and a contact label. For all the
other joints, Dj = 12, excluding the contact label. To match
the dimension of each joint within the skeleton-aware latent
space, we apply a joint-wise multi-layer perceptron (MLP)
to each mj , consisting of 2 linear layers and the Gaussian
error linear unit (GELU) activation function [1] in the mid-
dle, yielding the joint-wise hidden latent variables hj .

As mentioned in the main paper, the skeleto-temporal
convolution (STConv) layers use a combination of a skeletal
convolution (SkelConv) and a temporal convolution (Temp-
Conv). The SkelConv layer is a graph convolution over the
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Figure 2. Illustration of the skeletal pooling process for the Hu-
manML3D and KIT-ML datasets. The original skeleton (left) is
progressively abstracted by pooling adjacent joints (middle and
right). The notation i ← {} indicates the abstracted joint index
and the set of original joints that are grouped together. The un-
pooling layers operate in the reverse order to restore the skeletal
resolution.

joint dimension, which is defined as follows:

SkelConv(hj) := Θ1(h
j) +

1

|N (j)|
∑

n∈N (j)

Θ2(h
n),

https://github.com/seokhyeonhong/salad/


where Θ{1,2} represents a linear feed-forward layer, and
N (j) denotes the indices of joints neighboring to joint j.
The TempConv is a 1D convolution layer with a kernel of
size 3 and a stride of 1, and it is shared across all joints.
Additionally, we use residual connections within a stack
of STConv layers. For the activation function, we use the
GELU function at the end of each STConv layer.

For the skeleto-temporal pooling (STPool) layers, we ap-
ply the average pooling across both skeletal and temporal
dimensions. Specifically, temporal features are pooled with
a kernel of size 2 and a stride of 2, while skeletal pool-
ing reduces the number of joints by summarizing adjacent
joints. In contrast, the skeleto-temporal unpooling (STUn-
pool) layers perform the inverse operation of STPool. To
increase the skeletal resolution, we recreate unpooled joints
by summing the features from the corresponding pooled
joints. The temporal resolution is increased by upsampling
the features along the temporal dimension using linear in-
terpolation. The downsampling and upsampling for each
dataset is visualized in Figure 2.

A.2. Skeleto-temporal Denoiser

In this section, we provide the implementation details for
each component of the skeleto-temporal denoiser. Posi-
tional Embedding. We incorporate order information of
zlt for both temporal and skeletal dimensions by applying
positional embedding. Specifically, we first compute the
positional embedding e ∈ RTJ×D using the sinusoidal po-
sitional embedding method [5]. We then reshape this tensor
to RT×J×D, and add it to the motion latent zlt .
FiLM. To feed the diffusion timestep information to the de-
noiser, we employ the FiLM operator combined with an
MLP layer, which has shown impressive performance in
motion diffusion models [4, 6]. Specifically, the diffusion
timestep t is passed through a sinusoidal positional embed-
ding, followed by an MLP layer, resulting in a scale factor
γt and shift factor βt, both D-dimensional vectors used to
modulate the output of network modules:

FiLM(z, t) = γt ⊙ z+ βt, (1)

where γt and βt are produced for each of attention block
and feed-forward network in each layer. For brevity, we
omit t for the FiLM in the following sections.
Feed-forward Network. To enhance the non-linearity ca-
pacity of the model, we employ an FFN module combined
with FiLM:

FFN(zlt) := MLP(GELU(MLP(LN(zlt)))), (2)

zl+1
t ← zlt + FiLM(FFN(zlt)), (3)

where GELU represents the Gaussian error linear unit acti-
vation function [1]. Notably, FFN module produces the out-
put of the l-th transformer layer, which we denote as zl+1

t ,
and it is used as an input of the (l + 1)-th layer.

A.3. Hyperparameters

For training the VAE, we set λpos = 0.5, λvel = 0.5, and
λkl = 0.02. We also used a learning rate scheduler for train-
ing both the VAE and denoiser, which linearly increased the
learning rate from 0 to 0.0002 over the first 2000 steps, then
decayed it by a factor of 0.1 at 150,000 and 250,000 itera-
tions for the VAE, and at 50,000 iterations for the denoiser.
The latent dimensions for modules of the skeleto-temporal
VAE was set to 32, while the denoiser used a latent dimen-
sion of 256.

We used a scaled linear scheduler for the noise sched-
ule during denoiser training, similar to the approach used in
Stable Diffusion [3]. Specifically, βt at diffusion timestep t
is defined as follows:

βt =

(√
β1 +

t− 1

T − 1
·
(√

βT −
√
β1

))2

, (4)

where we set β1 = 0.00085, βT = 0.012, and T = 1000
following the default setting of Stable Diffusion. This
scheduler allows for a smooth transition between noise lev-
els, ensuring effective denoising throughout the entire pro-
cess.

B. Zero-shot Editing via Attention Modulation
To enable zero-shot editing by modulating cross-attention
maps between motion and text, we adopt the editing pro-
cedure introduced by Prompt-to-Prompt [2], which is de-
picted in Algorithm 1. Let Denoise(zt, t, c) represent a sin-
gle denoising step at diffusion timestep t using a pre-trained
SALAD model conditioned on text prompt c, producing the
denoised latent zt−1 and cross-attention map Mt. Addi-
tionally, Denoise(zt, t, c){M ← M̂} denotes a denoising
step where the original attention map M is replaced by a
modified attention map M̂, while the value V is computed
using the target prompt c∗. The function Edit(Mt,M

∗
t , t)

is a general editing function that modulates two attention
maps based on the diffusion timestep t, which will be elab-
orated in the following sections.
Word Swap. The objective of word swap is to incorpo-
rate descriptions from the target prompt while maintaining
movements from the source prompt. To this end, the source
prompt is used during early denoising steps, and the target
prompt is used in the later steps:

Edit(Mt,M
∗
t , t) :=

{
M∗

t if t < τ

Mt otherwise,

where τ is a hyperparameter that determines when to switch
from the source prompt to the target prompt during the de-
noising process. Because the overall composition is estab-
lished in the early steps, we guide the overall structure by
injecting the attention maps from the source prompt during



Algorithm 1 Zero-shot editing by cross-attention modula-
tion

1: Input: A source prompt c and a target prompt c∗.
2: Output: A source motion z0 and an edited motion z∗0.
3: zT ∼ N (0, I) a unit Gaussian random variable;
4: z∗T ← zT ;
5: for t = T, T − 1, . . . , 1 do
6: zt−1,Mt ← Denoise(zt, t, c);
7: z∗t−1,M

∗
t ← Denoise(z∗t , t, c

∗);
8: M̂t ← Edit(Mt,M

∗
t , t);

9: z∗t−1 ← Denoise(z∗t , t, c
∗){M← M̂t};

10: end for
11: return (z0, z

∗
0)

the early steps, and we use the attention maps of the target
prompt to refine details later. Although the optimal value of
τ can vary depending on the specific motion and text inputs,
we found that τ = 0.8T generally yields good results.
Prompt Refinement. In this case, the target prompt is cre-
ated by appending new tokens to the source text to add ad-
ditional details. We first obtain the cross-attention map of
the target text prompt M∗, and then overwrite the atten-
tion values for existing tokens with those from the original
cross-attention map M to preserve the common information
between the two prompts:

(Edit(Mt,M
∗
t , t))i,j,k :=

{
(M∗

t )i,j,k if A(j) = −1
(Mt)i,j,A(k) otherwise,

where i, j, and k denote the indices of the skeletal, tempo-
ral, and text tokens, respectively. The function A(·) is an
alignment function that maps a token index from the target
prompt c∗ to its corresponding index in c if one exists, or
returns −1 otherwise.
Attention Re-weighting. This editing case involves ampli-
fying or reducing the attention weights associated with spe-
cific word tokens to influence the resulting motions. Given
a word token k∗ and a scaling parameter s, we adjust the
attention values as follows:

(Edit(Mt,M
∗
t , t))i,j,k :=

{
s · (Mt)i,j,k if k = k∗

(Mt)i,j,k otherwise.

We empirically found that setting s within the range of
[−3, 3] yields reasonable editing results. Notably, using
negative weights can generate semantically opposite out-
comes, indicating that the cross-attention maps in SALAD
capture a sophisticated understanding of the high-level re-
lationships between text and motion.
Attention Mirroring. In this case, cross-attention values
between counterpart body parts, such as the left and right
arms, are swapped:

(Edit(Mt,M
∗
t , t))i,j,k := (Mt)i,C(j),k

where C(j) outputs the joint index of the counterpart if it
exists, or j otherwise. This approach effectively mirrors the
motion without needing to compute a new cross-attention
map M̂ corresponding to an editing text prompt.

C. Additional Experiment Results

C.1. Cross-attention Maps

We present additional visualizations of cross-attention maps
between the input text and generated motions in Figure 3.
Overall, the attention maps consistently captured the rela-
tionships between the text and motion as reflected in the
generated results. In Figure 3-(a), attention peaks for jump-
ing and high occurred twice along the temporal dimen-
sion, corresponding to the character jumping twice, indi-
cating that the attention map effectively captures the rela-
tionship between frames and words. Additionally, as shown
in Figure 3-(b), the words walking and treadmill were as-
sociated with the lower body parts, showing consistently
high weights along the frames, demonstrating that the at-
tention map captures the relationship between body parts
and words. Figure 3-(c), (d), and (e) further show that
the cross-attention maps capture the relationship between
skeleto-temporal features and each word, conveying which
body part should to be activated, at which timing, and where
to act, such as sits ... ground, stretches arms ... forward,
and puts both hands ... air. Overall, these results demon-
strate that cross-attention maps effectively capture the rela-
tionship between skeleto-temporal features and each word
in the textual descriptions.

C.2. Classifier-free Guidance Weights

We present the quantitative results for different classifier-
free guidance (CFG) weight values in Table 1. As men-
tioned in the main paper, the performance of SALAD im-
proved across both metrics as the weight values increased,
but excessively high weight values resulted in a decline in
performance for both metrics. Notably, R-precision exhib-
ited marginal differences for CFG weight values greater
than or equal to 7.5, remaining within statistically equiv-
alent ranges. In contrast, for FID and MM-Dist on the Hu-
manML3D dataset, the default setting w = 7.5 yielded the
best results. Similarly, in the KIT-ML dataset, w = 7.5 pro-
vided a balance between the quality and text-motion align-
ment. For Diversity, w = 1.5 produced results significantly
inferior to the ground truth in both datasets, but the per-
formance progressively improved as the CFG weight val-
ues increased. However, the optimal point at which the
best Diversity is achieved was different between datasets:
w = 11.5 for HumanML3D and w = 7.5 for KIT-ML.
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Figure 3. Additional visualizations of cross-attention maps between text and motion. Each row corresponds to a specific body part, and
each column represents temporal frames.

C.3. Diffusion Parametrization

To demonstrate the effectiveness of v-prediction
parametrization, we compared the results of SALAD
models trained with different parametrizations, as shown in
the last 3 rows of Table ??. While any variation of SALAD

produced comparable or outperforming results compared to
previous methods, v-prediction consistently produced more
stable results than the other alternatives across different
datasets. Specifically, on the HumanML3D dataset, x-
and v-prediction yielded statistically equivalent results for



w
R-Precision ↑ FID ↓ MM-Dist ↓ Diversity →Top-1 Top-2 Top-3

Real motion 0.511±.003 0.703±.003 0.797±.002 0.002±.000 2.974±.008 9.503±.065

1.5 0.438±.003 0.622±.002 0.727±.002 1.291±.020 3.411±.011 9.298±.085

2.5 0.517±.003 0.705±.002 0.801±.002 0.457±.011 2.945±.011 9.616±.089

3.5 0.548±.003 0.738±.002 0.829±.002 0.223±.006 2.782±.009 9.711±.092

4.5 0.563±.003 0.755±.002 0.842±.002 0.132±.004 2.711±.008 9.737±.090

5.5 0.573±.003 0.763±.002 0.850±.002 0.093±.003 2.674±.008 9.741±.094

6.5 0.578±.003 0.767±.002 0.854±.002 0.078±.003 2.656±.009 9.722±.095

7.5 (default) 0.581±.003 0.769±.003 0.857±.002 0.076±.002 2.649±.009 9.696±.096

8.5 0.581±.003 0.770±.002 0.857±.002 0.083±.002 2.650±.009 9.669±.094

9.5 0.581±.003 0.771±.002 0.858±.002 0.097±.003 2.655±.009 9.638±.093

10.5 0.581±.003 0.770±.002 0.857±.001 0.116±.003 2.663±.008 9.608±.094

11.5 0.581±.002 0.769±.002 0.857±.002 0.138±.003 2.673±.008 9.577±.093

12.5 0.578±.002 0.768±.002 0.856±.002 0.164±.003 2.686±.008 9.657±.091

CFG Weights R-Precision ↑ FID ↓ MM-Dist ↓ Diversity →Top-1 Top-2 Top-3

Real motion 0.424±.005 0.649±.006 0.779±.006 0.031±.004 2.788±.012 11.08±.097

1.5 0.439±.005 0.656±.006 0.774±.007 0.837±.033 2.755±.018 11.033±.115

2.5 0.471±.006 0.691±.005 0.809±.005 0.489±.017 2.593±.013 11.085±.118

3.5 0.480±.006 0.706±.005 0.818±.006 0.396±.013 2.562±.013 11.086±.120

4.5 0.484±.006 0.709±.005 0.823±.006 0.352±.011 2.559±.015 11.083±.122

5.5 0.484±.006 0.710±.005 0.824±.006 0.324±.009 2.571±.016 11.078±.122

6.5 0.481±.007 0.708±.006 0.824±.006 0.308±.009 2.588±.016 11.077±.119

7.5 (default) 0.480±.007 0.707±.006 0.826±.006 0.298±.009 2.608±.015 11.079±.119

8.5 0.476±.008 0.705±.005 0.823±.006 0.294±.008 2.630±.015 11.083±.120

9.5 0.477±.007 0.704±.005 0.822±.005 0.294±.008 2.651±.015 11.089±.120

10.5 0.474±.006 0.703±.005 0.820±.006 0.297±.009 2.674±.015 11.096±.121

11.5 0.472±.006 0.702±.006 0.818±.006 0.303±.009 2.697±.015 11.102±.121

12.5 0.471±.006 0.697±.006 0.815±.006 0.311±.010 2.719±.015 11.108±.122

Table 1. Quantitative evaluation results with different CFG weight values on the test sets of HumanML3D (top) and KIT-ML (bottom). ↑
and ↓ denote that higher and lower values are better, respectively, while→ denotes that the values closer to the real motion are better. Red
and blue colors indicate the best and the second best results, respectively.

R-precision within the confidence range, but v-prediction
achieved superior results on FID and MM-Dist compared
to x-prediction, while ϵ-prediction consistently produced
inferior results. On the KIT-ML dataset, ϵ-prediction
scored better on FID compared to x-prediction, while
both achieved similar results in terms of the text-motion
alignment. Also on this dataset, v-prediction significantly
outperformed both alternatives. These results demonstrate
the effectiveness of v-prediction in enhancing stability and
robustness in text-to-motion generation using SALAD.

C.4. FiLM Layers

While FiLM has been adopted in several motion diffusion
models [4, 6], its effectiveness in motion generation has yet
to be fully evaluated. Therefore, we compared the perfor-
mance of SALAD with and without FiLM, as shown in Ta-

Parametrization R-Precision (Top-3) ↑ FID ↓

x-prediction 0.860±.002 0.111±.003

ϵ-prediction 0.803±.002 0.257±.008

v-prediction 0.857±.002 0.076±.002

Table 2. Quantitative results on different diffusion parametriza-
tions.

ble 3. For the model without FiLM layers, we injected dif-
fusion timestep information to zlt by directly adding the po-
sitional embedding of diffusion timestep t to it. Across both
datasets, FiLM layers improved both text-motion alignment
and generation quality, indicating that explicit modulation
of intermediate representations effectively produces high-
quality and text-faithful results.



Method R-Precision (Top-3) ↑ FID ↓

with FiLM 0.857±.002 0.076±.002

without FiLM 0.843±.002 0.087±.003

Method R-Precision (Top-3) ↑ FID ↓

with FiLM 0.828±.005 0.296±.012

without FiLM 0.803±.006 0.311±.013

Table 3. Ablation results showing the effect of FiLM layers on the
test sets of HumanML3D (top) and KIT-ML (bottom).

Method FID ↓ MPJPE ↓

Full model 0.003±.000 0.016±.000

without Lpos 0.005±.000 0.023±.000

without Lvel 0.009±.000 0.016±.000

without both 0.012±.000 0.024±.000

Table 4. Ablation results showing the effect of FiLM layers on the
test sets of HumanML3D (top) and KIT-ML (bottom).

C.5. Loss Terms of VAE
To validate the effectiveness of the auxiliary loss terms in
the VAE, including Lpos and Lvel, we evaluated FID and
MPJPE while ablating these loss terms, as shown in Tab. 4.
Removing Lpos had a negative effect in both metrics, while
Lvel had no effect on MPJPE but led to a more significant
degradation in FID compared to ablating Lpos. Further-
more, removing both loss terms resulted in the worst per-
formance across all metrics. These results demonstrate the
importance of auxiliary losses on joint positions and veloc-
ities in refining the latent space, contributing to improving
motion quality and reliability.
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