
Simpler Diffusion: 1.5 FID on ImageNet512 with pixel-space diffusion

Supplementary Material

A. Connection between sigmoid loss and low-
bit training

Weighted diffusion losses can be closely related to low-bit
training, as shown in [25]. In earlier normalizing flow work,
low-bit training has been shown to achieve higher percep-
tual quality [24]. The reason that low-bit training improves
sample fidelity is quite intuitive: by throwing away less
significant (and thus important) bits from the training data,
the model spends more capacity on modeling more signifi-
cant bits. Here we will show how sigmoid loss is related to
low-bit training, and therefore provide a theoretical under-
standing on how sigmoid loss balances the bits from the data
of different importance.

Training diffusion models on different bit precisions and
their loss contributions may give results that are entangled
with optimization hyperparameters. We instead consider
a simplified data distribution setting: assume the data is
univariate, with a uniform distribution over the 2n possible
values, where n is the bit precision. We further assume the
model to be optimal for all noise levels, which is a mixture-
of-Gaussians whose means are the 2n possible values and
variance is determined by the log signal-to-noise ratio ω. A
diffusion loss over the entire dataset can be expressed as:

L = Eq(x)Eω→q(ω)w(ω)→x↑ x̂ω→2, (6)

= Eq(x)Eω→q(ω)w̃(ω)→ω↑ ω̂ω→2, (7)

= Eω→q(ω)w̃(ω)Eq(x)→ω↑ ω̂ω→2, (8)

where q(ω) is determined by the mapping ωt and t ↓ U(0, 1),
and q(x) is the data distribution. Given the simplified
data distribution and the optimal model, we can compute
Eq(x)→ω↑ ω̂ω→2 analytically. Figure 11 shows its value over
ω for multiple data distributions of different bit precision n.

We can also plot the weighted loss with weighting func-
tion w̃(ω) at different noise levels w̃(ω)Eq(x)→ω ↑ ω̂ω→2.
Given that the optimal sigmoid weighting at resolution 128
is w̃(ω) = ε(1↑ω), we follow [14] to shift the weighting to
w̃(ω) = ε(10.7↑ ω) for the univariate example, where the
additional bias term comes from 2 log(128). The weighted
loss is shown in Figure 12. Interestingly, if we follow the
low-bit training but instead of assuming the data is a uni-
form distribution at a certain precision, we assume it is a
mixture of multiple precisions, and then the loss ends up
being very similar to the one with the sigmoid weighting
(Figure 12). The mixture we visualize here is [8, 7, 6, 5]-bit
with a mixture proportion of [1, 4, 4, 6]. Informally speaking,
the loss of the sigmoid weighting is very similar training on

Figure 11. Expected loss over log signal-to-noise ratio ω for multi-
ple data distributions of different bit precision.

Figure 12. Weighted loss with a sigmoid weighting, compared with
a low-bit training of a mixture of precisions.

a lower-bit distribution of the data, where the data is only
modelled at full precision occasionally.

B. Experimental Details
B.1. Sigmoid Loss
The sigmoid loss can be easily implemented in the following
way:
def sigmoid_loss(x, model_x , logsnr_fn , t, bias):

logsnr = logsnr_fn(t)
dlogsnr_dt = jax.jvp(

logsnr_fn , t (ones_like(t) ,))[1]
weight = -!.5 * dlogsnr_dt * exp(

bias) * sigmoid(logsnr - bias)
return weight * mean_except_batch ((x-model_x)**2)

For completeness, recall that a cosine interpolated logsnr
schedule function from [14] can be defined as:

def cosine_interpolated(
t, lognsr_min =-1!, logsnr_max =1!,
image_res =512, noise_res_low =32,
noise_res_high =512)

log_change_high = log(image_res) - log(noise_res_high)
log_change_low = log(image_res) - log(noise_res_low)

b = arctan(exp(-!.5 * logsnr_max))
a = arctan(exp(-!.5 * logsnr_min)) - b
logsnr_cosine = -2. * (jnp.log(jnp.tan(a * t + b))
logsnr_high = logsnr_cosine + log_change_high
logsnr_low = logsnr_cosine + log_change_low
return (1 - t) * logsnr_high + t * logsnr_low

Observe here that the min and max values are shifted along
as well and are not the limits of the resulting function.

B.2. Power loss
Recall that the power loss aims to amplify the loss of
low sub-band (smooth) signals in the spatial domain via
Haar wavelets. Averaging (ie, low passes) increases the
logsnr, therefore we adjust the logsnr based on the num-
ber of low passes. We apply the Haar wavelet trans-
formation iteratively to the input I = x̂ ↑ x. The
Haar wavelet W (I) = (L,H) transforms the input into
a low sub-band (smooth) sk = (i2k + i2k+1)/

↔
2 and

a high sub-band (detail) dk = (i2k ↑ i2k+1)/
↔
2. First

W is applied to the rows Wr(I) = (L,H) and then to
the columns on each sub-band Wc(L) = (LL,LH) and
Wc(H) = (HL,HH). To give an example, for a 5122

image, applying this two times results in the sub-bands
S = {LLLL,LLLH,LLHL,LLHH,LH,HL,HH}
where the first four sub-bands have a resolution of 1282

and the last three have a resolution of 2562.
Intuitively we want to emphasize high frequencies at the

higher resolutions and low frequencies at the lower resolu-
tions. Therefore we shift the logsnr per sub-band roughly
according to the expected increase in signal-to-noise. We
calculate the shift for a sub-band as bs = log(2) · l(s) ↑ b

where l(s) is the number of low passes on the sub-band s (ie,
the number of L’s in the sub-band). Just like the sigmoid loss
we cancel out the effect of weighting of the noise schedule
on the loss ws = ε(ωt + bs) · ↑dωt

dt . Lastly we sum over
each sub-band and multiply the sub-band weight with the
squared sum of the sub-band PL(I) =

∑
s↑S ws(ωt)||s||2.

B.3. Estimating Flops
Although FLOPs can be estimated directly using accelerator
tooling, it turns out that the most significant operations out-
weigh all other minor operations (within 1%). These most
significant operations are matrix multiplications (including
convolutional layers) and the self-attention dot product. The
compute footprint of these operations for our architecture
can be calculated using the following equations. Consistent
with [20], we assume a training step has the computational
cost of a forward pass times 3, and that multiply-adds are
counted as one flop.
def transformer_gflops(size , num_channels , blocks):

q, k, v, attn_out , mlp in (4), mlp out (4).
linears = 12 * num_channels ** 2 * blocks * size ** 2
attn = 2 * size ** 4 * blocks * num_channels
return (linears + attn) / 1!!!**3

def resblock_gflops(size , num_channels , blocks):
flops = 2 * 3**2 * blocks # 2 layers with 3x3 conv
flops *= num_channels ** 2 # channels
flops *= size ** 2 # spatial resolution
return flops / 1!!!**3

B.4. Guidance Intervals
We use guidance intervals [27], in which classifier-free guid-
ance is only applied for noise levels within the interval and
disabled elsewhere. Based on a grid search we found that the
combination of guidance 1.0 on logsnr (-3, +5) obtained the
best FID quality on ImageNet512. Without further tuning
we found that the minimum logsnr could simply be shifted
by approximately 1.5 for a 2x resolution change, similar to
how loss biases are shifted. The logsnr max value is typically
less sensitive [27], and was kept constant.

B.5. A note on auto-guidance
Besides applying guidance on intervals [27], there is another
technique named autoguidance [21] which can even produce
better FIDs with EDM-XXL (1.2 from 1.4 with guidance in-
tervals). Autoguidance does not use an unconditional model
as negative signal. Instead, the negative signal is provided
by a worse model, either earlier in training or a small ver-
sion. Autoguidance increases the hyperparameter space of
guidance even further, and we found that this made autogu-
idance more difficult to tune. For that reason we opted to
compare all methods in literature on guidance intervals if
available, and also provided the performance of our model
with constant guidance to compare with older methods.

B.6. Experimental settings
The small model variant uses the following settings.
channels = [128, 256, 512, 1!24]
num_updown_blocks = [3, 3, 3],
num_mid_blocks = 16,
block_dropout = [!., !., !.1, !.1],
block_type = [’ResBlock ’, ’ResBlock ’,

’Transformer ’, ’Transformer ’],
mean_type = v
loss_type = sigmoid:-3 # 512^2
patching_size = 4
loss_type = sigmoid:-1 # 256^2
patching_size = 2
loss_type = sigmoid :! # 128^2
patching_size = 1

The flop heavy variant uses the following settings:
channels = [128, 256, 512, 1!24]
num_updown_blocks = [3, 3, 3]
num_mid_blocks = 16
block_dropout = [!., !., !.1, !.1]
block_type = [’ResBlock ’, ’ResBlock ’,

’Transformer ’, ’Transformer ’]
mean_type = v
loss_type = sigmoid:-3 # 512^2
patching_size = 2
loss_type = sigmoid:-1 # 256^2

patching_size = 1

loss_type = sigmoid :! # 128^2
patching_size = 1
for 128^2 resolutions the top -level
layer (128 channels) is entirely removed.

To our surprise, a grid search over guidance strength
and guidance interval determined that the same settings were
optimal for the small and flop heavy variant on ImageNet512.
We then shifted the lower bound of the guidance interval
based on resolution shift. Resulting in:
guidance_interval = (-3, 5) # 512^2
guidance_interval = (-1.5, 5) # 256^2
guidance_interval = (!., 5) # 128^2
guidance = 1.!
num_steps = 512
sampler = ’ddpm’
clip_x = ’static ’
logvar_type = ’!.3’

The training settings are:
batch_size =2!48
optimizer=’adam’
adam_beta1 = !.9
adam_beta2 = !.99
adam_eps = 1.e-12
diffusion_schedule =

’cosine_interpolated_low_32_high_512 ’
learning_rate =1e-4
learning_rate_warmup_steps =1! _!!!
weight_decay =!.!
ema_decay =!.9999
max_train_steps = 1_!!!_!!! # for small variants
max_train_steps = 8!! _!!! # for flop heavy

B.7. Kinetics600
The training settings are:
batch_size =512
optimizer=’adam’,
adam_beta1 =!.9
adam_beta2 =!.98
adam_eps =1.e-1!
learning_rate =1e-4
learning_rate_warmup_steps =1!!
diffusion_schedule =

’cosine_interpolated_low_32_high_128 ’
weight_decay =!.!
ema_decay =!.9999
max_train_steps = 5!! _!!!

And the model settings are:
channels = [128, 256, 512, 1!24]
num_updown_blocks = [3, 3, 4],
num_mid_blocks = 8,
block_dropout = [!., !., !.1, !.1],
block_type = [’ResBlockConv3D ’, ’ResBlockConv3D ’,

’LocalTransformer_19_19_19 ’,
’Transformer ’],

mean_type = v
loss_type = sigmoid :!
guidance = !. # unconditional
num_steps = 128
sampler = ’aDDIM’
sampler_noise = ’data_! .9’
clip_x = ’static ’

Using the same gflop calculations as before adapted to 3D
Convs, our 3570 GFLOPs per forward pass, and about 2.5
zettaflops for training. For reference, the base model of

Figure 13. The sigmoid b = →3 loss versus the EDM monotonic
loss, without any guidance with the small architecture variant.

(a) 100k

(b) 200k

Figure 14. Timeshift results. Setting the bias more aggressively
and then annealing to the best known setting improves performance
somewhat, although the differences are relatively small.

W.A.L.T. uses approximately 0.5 zettaflops (not counting the
autoencoder training). This shows that pixel-based models
can outperform latent approaches and scale much better
using our tuning than before. On the other hand, they still
require more compute to achieve this performance that latent
approaches. During sampling we use aDDIM [10] because
we found that it allowed fewer sampling steps (128) with
acceptable performance without much noise schedule tuning,
making evaluation during training a bit faster.

(a) fixed depth (b) increasing depth

Figure 15. Encoder-Decoder Experiments

50 100 200 500 1000 2000

1

2

3

5

10

ADM

ADM-U

DiT-XL/2 (interval)

U-ViT, L

VDM++

EDM2-S (interval)

EDM2-XXL (interval)

Small

Small

Flop Heavy

Flop Heavy

Previous (latent)
Previous (pixel)
Ours (no interval)
Ours

Figure 16. Model forward pass complexity (gigaflops) on ImageNet512, figure adapted from [20]. Note: both axis are in log-scale. See also
Table 5 for more details.

C. Additional Results
C.1. No Guidance
To validate the difference between the sigmoid and edm-
monotonic loss even further, we analyze the FID perfor-
mance over training iterations without applying any guidance
to either model. As can be seen in Figure 13, the difference
in performance is even more pronounced when no guidance
is applied.

C.2. Timeshifted Sigmoid Losses
The bias term in the sigmoid loss function could be used to
emphasize on the low-level information (bits) of the gener-
ated images. One could argue that during the course of train-
ing, it is important to first focus on the structure of the image
and only later penalise mismatches in the high-frequency
details. Therefore, we ran a set of experiments with a time
shifted bias, where the bias is increased with a linear warmup,

we start with bias bstart and interpolate over tb steps towards
bend, yielding: bt = bstart + (bend ↑ bstart) ·min(t/tb, 1). So
the the bias is interpolated from a starting value to the (fixed)
end value (-3) in 100k or 200k training steps.

In Figure 14, we report the FID over the course of train-
ing. From the results we observe that shifting the loss during
training generally leads to a small improvement, albeit result-
ing in two additional hyper parameters (starting value and
number of steps). Especially when the bias is not too low:
shifting from bias -8/-6 to -3 is a good idea, as long as the
warmup is relatively quick (100k iterations). Surprisingly,
for warmups to 200k iterations the time shifted models have
worse performance in early training of stages.

C.3. Asymmetric U-ViTs
In our U-ViT design only a single skip connection per en-
coding/decoding level is used, allowing for different number
of blocks in each level. Here we experiment using differ-

Table 5. Comparison on sampling cost in FLOPs and generation methods.

Method NFE Inference cost (GFLOPs) Sampling cost (TFLOPs) Sampling time (s) FID

StyleGAN-XL [38] 1 - - 0.10 2.40
EDM2-S [20] 63 102 42.5 - 1.68
EDM2-XXL [20] 63 552 61.6 - 1.40
DiT-XL/2 [31] 250 525 262.5 - 2.40
Pagoda [22] 1 - - 0.05 1.80

SiD2 16-step distilled (ours) 16 653 10.4 0.29 1.50

ent numbers of encoding blocks versus decoding blocks at
the same level. The results are in Figure 15. We see that
increasing depth helps, and decoder could be a little heavier
than the encoder, although symmetric scaling (E3-D3, our
baseline) already acts as a strong baseline.

C.4. Forward pass complexity
In addition to the training cost in the main text, Figure 16
shows the forward pass complexity. Here we see that again
our method outperforms all existing pixel approaches by a
large margin, and performs similar albeit somewhat worse
than latent approaches.

C.5. Additional samples
We provide more illustrative examples for ImageNet512
generation (Figure 17) and Text-to-Image (Figure 18 and
Figure 19).

Figure 17. Some random (not cherry-picked) class-conditional samples of 512↑512 that have been generated by SiD2 flop heavy. Guidance
2.0 on interval logsnr ↓ (-8, 5). Every row uses the same class-conditioning, every column uses the same rng.

Figure 18. Generations from the text-to-image model. Used prompts (the Cartesian product of the sets): "{A strawberry elephant, A corgi
wearing a hat, A bird made of seeds, Pixel art: a man walking} in a {lush forest, busy street}."

Figure 19. Generations from the distilled text-to-image model. Guidance is set to +3. For each prompt two images selected from four
generated images. Used prompts: (1) A couple gets caught in the rain, oil on canvas, (2) A lone traveller walks in a misty forest, (3) A
walking figure made out of water, (4) In the swamp, a crocodile stealthily surfaces, revealing only its eyes and the tip of its nose as it moves
forward, (5) A fox dressed in suit dancing in park, (6) Pouring chocolate sauce over vanilla ice cream in a cone, studio lighting, (7) An
astronaut riding a horse, (8) Aurora Borealis Green Loop Winter Mountain Ridges Northern Lights, (9) Sailboat sailing on a sunny day in a
mountain lake, (10) A dog driving a car on a suburban street wearing funny sunglasses.

	Introduction
	Background

	Simpler Diffusion
	Revisiting the sigmoid loss
	Flop heavy scaling
	Residual U-ViTs: Removing blockwise skip-connections
	Distillation

	Related Work
	Experiments
	Sigmoid weighting versus others
	Scaling channels vs tokens on ImageNet
	Removing block skip connection
	Literature comparison

	Discussion
	Connection between sigmoid loss and low-bit training
	Experimental Details
	Sigmoid Loss
	Power loss
	Estimating Flops
	Guidance Intervals
	A note on auto-guidance
	Experimental settings
	Kinetics600

	Additional Results
	No Guidance
	Timeshifted Sigmoid Losses
	Asymmetric U-ViTs
	Forward pass complexity
	Additional samples

