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1. Proofs
1.1. Proposition 1
Proposition 1. Assume E1, . . . , ErU are all linear operations
and a sufficient number of probes. The dense expert (yk =∑

ij WijkXij , Eq. 1 in the manuscript) and linear probing
network (y = T (e), Eq. 2 in the manuscript) have identical
expressivity.

Proof. We will prove both that the dense expert entails linear
probing (1), and that probing entails linear experts (2).

Direction (1) is trivial, as linear probing is a composition
of linear operations, it follows that the operation is a lin-
ear operation from RdW×dH → RdY . As the dense expert,
parameterized as W ∈ RdW×dH×dY , can express all lin-
ear operations in RdW×dH → RdY , it clearly entails linear
probing.

Direction (2) requires us to prove that we can find a
set of matrices U, E [1], E [2], · · · , E [rU ], T such that y =
T
∑

l E [l]Xul =
∑

ij WijkXij for every X ∈ RdW×dH

and any W ∈ RdW×dH×dY . We show a proof by con-
struction. Let T = I (the identity matrix), U = I and
E [l]ik = Wilk. We have:

yk = (T
∑
l

E [l]Xul)k =
∑
ijl

WilkXijδjl (1)

Where δjl is 1 in the diagonal and 0 otherwise, the T is the
identity matrix and cancels out. Summing over l, we obtain:

yk =
∑
ij

WijkXij (2)

This proves that linear probing can express any dense expert.

1.2. Proposition 2
Proposition 2. The linear ProbeX (y = T

∑
l MlV

TXT ul,
Eq. 4 in the manuscript) has identical expressivity as us-
ing the dense predictor (yk =

∑
ij WijkXij , Eq. 1 in the

manuscript), when the weight tensor W obeys the Tucker
decomposition:

WTucker =
∑
nml

Mnml · tn ⊗ vm ⊗ ul

Proof. The Tucker decomposition expresses a 3D tensor
W ∈ RdW×dH×dY by the product of a smaller tensor
M ∈ RrT×rV ×rU and three matrices U ∈ RdH×rU , V ∈
RdW×rV , T ∈ RdY ×rT as follows:

W =
∑
nml

Mnml · tn ⊗ vm ⊗ ul (3)

Where ⊗ is the tensor product, and uq, vq, tq are the qth

column vectors of matrices U, V, T respectively.

The expression for the Tucker decomposition in index
notation is:

Wijk =
∑
nml

TknMnmlVimUjl (4)

By linearity, we can reorder the sums as:

Wijk =
∑
n

Tkn

∑
ml

MnmlVimUjl (5)

We can equivalently split tensor M into r matrices
M [1],M [2], · · · ,M [r], so that:

Wijk =
∑
n

Tkn

∑
ml

M [l]nmVimUjl (6)

Multiplying tensor W by input matrix X ∈ RdW×dH , the
result is:

ỹk =
∑
ij

XijWijk =
∑
ij

Xij

∑
n

Tkn

∑
ml

M [l]nmVimUjl

(7)
By linearity, we can reorder the sums:

ỹk =
∑
n

Tkn

∑
ml

M [l]nm
∑
ij

VimXijUjl (8)

Rewriting U using its column vectors this becomes:

ỹk =
∑
n

Tkn

∑
ml

M [l]nm
∑
i

Vim(Xul)i (9)

Rewriting the sum over i as a matrix multiplication:

ỹk =
∑
n

Tkn

∑
ml

M [l]nm(V TXul)m (10)

Rewriting the sum over m as a matrix multiplication:

ỹk =
∑
n

Tkn

∑
l

(M [l]V TXul)n (11)

Rewriting the sum over n as a matrix multiplication, we
finally obtain:

ỹ = T
∑
l

M [l]V TXul (12)



2. Additional discussion
2.1. Mechanistic vs. functional weight learning
Herrmann et al. [1] distinguished between two approaches to
weight-space learning. The mechanistic approach treats the
weights as input data and learns directly from them, while
the functionalist approach (e.g., probing) interacts only with
a model’s inputs and outputs. Although the functionalist
approach bypasses weight-space-related nuisance factors
such as permutations or Model Trees, it treats the entire
model as a black box, limiting its scope. ProbeX can be seen
as a blend of both approaches, enabling us to operate at the
weight level while engaging with the function defined by
the weight matrix. This approach may facilitate the study of
different model layers’ functionalities. For instance, in the
case of the MAE and Sup. ViT Model Trees, which share
the same architecture, the most effective layer for our task
differed between the two. This suggests that, despite having
the same architecture, the two models utilize their layers for
different functions.

Similarly, for our aligned representations, the best-
performing layer is a “query” layer in the U-Net’s encoder.
However, examining the top 10 best-performing layers by in-
distribution accuracy reveals that the specific “query” layer
chosen is critical, resulting in a 6.6% difference in zero-shot
accuracy between the best and second-best layers. Addi-
tionally, while two of the top 10 layers are “out” layers
and perform well on in-distribution samples, their perfor-
mance drops sharply on the zero-shot task, causing a rank
decrease of five places. Table 1 lists the top 10 layers by
in-distribution validation accuracy alongside their zero-shot
task results.

2.2. Self-supervised learning vs. aligning represen-
tations

Here, we align model weights with existing representations.
While weight-space self-supervised (SSL) learning [4, 5, 7]
do not depend on external representations, they typically re-
quire carefully crafted augmentations and priors. Designing
such augmentations for model weights is non-trivial as key
nuisance factors are still being identified. We hope our work
accelerates research on new weight-space SSL methods.

2.3. Other weight-space learning tasks
In this paper we focused on predicting the categories in
a model’s training dataset. However, many more weight-
space learning tasks exists. As demonstrated in Prop. 1, our
probing formulation is equivalent to the weight formulation,
suggesting that ProbeX can potentially perform any task
achievable by other mechanistic approaches. Since our focus
has been on predicting the model’s training dataset categories
and their connection to text-based representations, extending
ProbeX to these additional tasks is left for future work.

Table 1. Best performing layers of SD200: Rankings differ signifi-
cantly between in-distribution and zero-shot tasks. Numbers in (·)
indicate the amount the layer moved up or down in rank.

Layer Name In Dist. ↑
Acc.

Zero-shot ↑
Acc.

down.2.attentions.1.attn2.q 0.974 0.898 (0↑ )

up.1.attentions.1.attn2.q 0.958 0.832 (2↓)

up.1.attentions.0.attn2.q 0.952 0.850 (1↑ )

up.1.attentions.1.attn2.out.0 0.946 0.665 (5↓)

up.1.attentions.2.attn2.q 0.944 0.822 (1↓)

up.1.attentions.2.attn2.out.0 0.920 0.641 (5↓)

down.2.attentions.0.attn2.q 0.916 0.830 (2↑ )

up.2.attentions.2.attn2.k 0.872 0.735 (0↑ )

mid.attentions.0.attn2.q 0.866 0.848 (6↑ )

up.2.attentions.1.attn2.k 0.830 0.760 (3↑ )

Figure 1. Additional model retrieval results: Retrieval is per-
formed using model weights, to visualize each model we use the
set of all the images that were used to fine-tune the model.

3. Mixture-of-Experts router

As described in the manuscript, when handling Model
Graphs with multiple Model Trees, we use a mixture-of-
experts approach. This involves first learning a routing func-
tion and then training a separate ProbeX model for each
Model Tree.

To implement the routing function, we perform hierarchi-
cal clustering on the ℓ2 pairwise distances between models
in the Model Graph. By calculating distances for a single
model layer, this stage is significantly accelerated, enabling
us to cluster Model Graphs with up to 10,000 models in
under 5 minutes. Once clustering is complete, the routing
function assigns each model to the nearest cluster based on
ℓ2 distance. The number of Model Trees is determined using
the dendrograms produced by hierarchical clustering. We



Figure 2. r(·) dimension ablation: We ablate the effect of changing
the dimension of all rU , rV and rT jointly. We can see that beyond
some point the performance drops.

Figure 3. Number of probes (rU ) ablation: We fix rV and rT to
128 and change the number of probes (rU ). We can see that too
many probes decreases the performance.

use the scipy [8] implementation with default hyperparam-
eters.

In practice, this simple routing function achieved perfect
accuracy every time.

4. Additional model retrieval results

In Sec. 6.2.2 of the manuscript, we presented results for the
task of model retrieval. Here, we provide results for all held-
out models in SD200. These results are not cherry-picked,
and each model is visualized using the full set of images
that were used for its fine-tuning. In Fig. 1, we display two
additional results, in Figs. 18 to 20 present the remaining
results.

5. Additional ablations

We provide additional ablations and expand on the ones from
the manuscript.

Figure 4. Probe dimension (rV ) ablation: We fix rU and rT to
128 and change the probe dimension (rV ). We can see that even
a small probe dimension already results in good performance and
that increasing it does not help beyond some point.

Figure 5. Encoding dimension (rT ) ablation: We fix rU and
rV to 128 and change the encoding dimension (rT ). We can see
that the size of the model encoding plays an important role in the
performance of our method.

5.1. rU , rV , rT size ablation
We ablate the effect of the dimensions rU , rV , and rT using
the Sup. ViT Model Tree. We begin by examining the impact
of jointly increasing all dimensions. As shown in Fig. 2,
increasing the size improves performance up to a point (128),
after which performance begins to decline. When jointly
adjusting all dimensions, the larger model size appears to
be responsible for this drop. However, when we vary each
dimension independently while fixing the other two at 128,
we observe a different pattern.

Starting with the number of probes (rU ), as shown in
Fig. 3, increasing the number of probes has minimal effect
on performance until a threshold (256), beyond which per-
formance drops significantly. This decline may explain the
performance drop in Fig. 2, even without an extreme increase
in the parameter size.

In Fig. 4, we observe that changing the dimension of the



Figure 6. Deeper ProbeX encoder ablation - discriminative

Figure 7. Dataset size ablation

probes (rV ) has little impact on performance. Lastly, Fig. 5
shows that increasing the dimension of the encoding (rT )
has a dramatic effect, significantly improving performance.

5.2. Deeper ProbeX encoders
Here, we evaluate whether deeper, non-linear ProbeX en-
coders outperform our single hidden-layer encoder. Specif-
ically, we stack additional dense layers followed by non-
linear activations and assess their performance. This ex-
periment is conducted for each architecture in the Model-J
dataset (i.e., ViT, ResNet, and Stable Diffusion). As shown
in Figs. 6 and 8, deeper encoders tend to overfit, leading to
reduced performance.

5.3. Dataset size
We examined the effect of dataset size on accuracy. Indeed,
in Fig. 7 we see that as discussed in the motivation, models
that belong to the same Model Tree have positive transfer.

5.4. Text encoder
We ablate whether our success in aligning model weights
with CLIP rerepresentations is due to the fact Stable Dif-
fusion was originally trained with CLIP. We perform the

Figure 8. Deeper ProbeX encoder ablation - SD200

Table 2. Text-Encoder Ablation on SD200: We ablate the sen-
sitivity of the representation alignment to different text encoders
using the zero-shot experiment. While CLIP performs best, as
expected due to Stable Diffusion’s training, our approach remains
effective across various text encoders, demonstrating robustness to
the choice of text backbone

Encoder Acc. ↑
BLIP2 0.564
OPENCLIP 0.860
CLIP 0.898

zero-shot experiment using SD200 and the following text
encoders. The results in Tab. 2, suggest that while CLIP per-
forms best, our approach remains effective across different
text encoders. This shows the robustness of ProbeX to the
choice of text backbone.

6. Hugging Face Model Graph analysis

Our presented statistics regarding Model Trees are based
on the “hub-stats” Hugging Face dataset1. This dataset,
maintained by Hugging Face, is automatically updated daily
with statistics about Hugging Face models, datasets, and
more. We used a version from late September 2024, when
there were “only” about 800,000 models hosted on Hug-
ging Face. We utilized the base_model property from
model cards and aggregated based on it. However, since
not all models on Hugging Face use this property, these
statistics are not 100% accurate and may contain some bias.
Additionally, Fig. 1 in the manuscript (Growth in Hugging
Face models) also uses the “hub-stats” dataset and is based
on the graphs shown at https://huggingface.co/
spaces/cfahlgren1/hub-stats.

1https : / / huggingface . co / datasets / cfahlgren1 /
hub-stats

https://huggingface.co/spaces/cfahlgren1/hub-stats
https://huggingface.co/spaces/cfahlgren1/hub-stats
https://huggingface.co/datasets/cfahlgren1/hub-stats
https://huggingface.co/datasets/cfahlgren1/hub-stats


Table 3. Hyperparameters overview - Discriminative split

Name Value

lr
[5e− 4, 3e− 4, 1e− 4, 9e− 5,

7e− 5, 5e− 5, 3e− 5]

lr_scheduler
linear, cosine, cosine-with-restarts,

constant, constant-with-warmup

weight_decay
[5e− 2, 3e− 2, 1e− 2, 9e− 3,

7e− 3, 5e− 3]
epochs [2− 9]
random_crop T,F
random_flip T,F
batch_size 64
fine-tuning type Full Fine-tuning

7. Dataset details

Note: The dataset will be made publicly available as an
Hugging Face dataset.
Existing weight-space learning datasets and model zoos
[2, 6] primarily consist of models that are randomly initial-
ized. This means that each model in such datasets serves as
the root of a distinct Model Tree containing only that model.
As demonstrated in the motivation section of the manuscript,
learning from such Model Graphs is significantly more chal-
lenging, highlighting the need for our approach of learning
within Model Trees. Furthermore, existing datasets primarily
consist of small models, typically with only thousands of
parameters per model. As such, we cannot utilize the existing
and established weight-space learning datasets.

To address this, we introduce the Model Jungle dataset
(Model-J), which simulates the structure of public model
repositories. Each of our fine-tuned models is trained us-
ing a set of hyperparameters sampled uniformly at random.
Discriminative models share the same set of possible hyper-
parameters, summarized in Tab. 3. Generative models, in
contrast, use a different set of hyperparameters detailed in
Tab. 4. Notably, in the generative split, our Model Trees
have multiple levels of hierarchy, as models were fine-tuned
from SD1.2 to SD1.5. This structure is designed to simulate
public model repositories, where Model Trees often exhibit
multiple levels of hierarchy. In Figs. 10 and 12 to 14 we
provide a summary of the test accuracy the models in the
discriminative split converged to. In Figs. 11 and 15 to 17
we plot these accuracies as a function of the model’s learning
rate.

For the discriminative split, we use the following models
as the Model Tree roots taken from Hugging Face:
• https : / / huggingface . co / google / vit -
base-patch16-224

• https://huggingface.co/facebook/vit-
mae-base

• https://huggingface.co/facebook/dino-

Table 4. Hyperparameters overview - generative Split

Name Value

# images [5-10]

lr
[5e− 4, 3e− 4, 1e− 4, 9e− 5,

7e− 5, 5e− 5, 3e− 5]

prompt_template
a photo of a, a picture of a,

a photograph of a, an image of a,
cropped photo of the, a rendering of a

base_model [SD1.2, SD1.3, SD1.4, SD1.5]
steps [450, 500, 550, 600, 650, 700]
fine-tuning type LoRA
random_crop T,F
rank 16
batch_size 1

Table 5. Model Jungle dataset summary. We train over 14,000
models, covering different architectures, tasks and model sizes.
Each model uses randomly sampled hyper parameters

Name FT Type Task Size # Classes
DINO Full FT Att. classification 1000 50/100
MAE Full FT Att. classification 1000 50/100
Sup. ViT Full FT Att. classification 1000 50/100
ResNet Full FT Att. classification 1000 50/100
SD200 LoRA Fine-grained 5000 200
SD1k LoRA Few shot 5000 1000

Figure 9. Distribution of splits in the generative split

vitb16
• https : / / huggingface . co / microsoft /
resnet-101

8. Implementation details
8.1. Experimental setup
We use the Model-J dataset presented in Sec. 5 of the
manuscript, split into 70/10/20 for training, validation, and
testing. Given the significant variation in results between lay-
ers, we train ProbeX for 500 epochs on each layer and select

https://huggingface.co/google/vit-base-patch16-224
https://huggingface.co/google/vit-base-patch16-224
https://huggingface.co/facebook/vit-mae-base
https://huggingface.co/facebook/vit-mae-base
https://huggingface.co/facebook/dino-vitb16
https://huggingface.co/facebook/dino-vitb16
https://huggingface.co/microsoft/resnet-101
https://huggingface.co/microsoft/resnet-101


Figure 10. Sup. ViT - Test accuracy distribution Figure 11. Sup. ViT - Effect of learning rate on test accuracy

the best layer and epoch based on the validation set. We use
the Adam optimizer with a weight decay of 1e−5 and a learn-
ing rate of 1e−3. The number of probesm probe dimensions,
and encoder dimension are set to rU = rV = rT = 128.
We reshape higher-dimensional weight tensors (e.g., convo-
lutional layers) into 2D matrices, with the first dimension
being the output channels.

8.2. Baselines
8.2.1. Neural Graphs baseline
As mentioned in the manuscript, we attempted to use [3] as
a baseline but were unable to scale the method to models in
our dataset. Here, we provide additional details about this
attempt. Neural Graphs [3] is a graph-based approach that
treats each bias in the network as a node and each weight as
an edge. These methods scale quadratically with the num-
ber of neurons, leading to computational challenges when
applied to larger models. To address this, we adapted the
Neural Graphs approach to the single-layer case, but even in
this simplified scenario, it required a relatively low hidden di-
mension to run on a 24GB GPU. Since this baseline yielded
near-random results in our experiments with discriminative
models, we chose not to include its results in the tables.

8.2.2. StatNN
For the discriminative split, we used StatNN as a baseline
by training XGBoost on the StatNN features. To compare
StatNN in the case of text-aligned representations, we re-
placed XGBoost with an MLP, allowing the baseline to be
trained with the same contrastive objective used for ProbeX.
We developed two StatNN variants: i) StatNNLinear: A
single linear layer trained on top of the StatNN features. ii)
StatNNMLP : A deeper architecture designed to match the
parameter count of our method.



Figure 12. DINO - Test accuracy distribution

Figure 13. MAE - Test accuracy distribution

Figure 14. ResNet - Test accuracy distribution
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Figure 18. Additional non-cherry picked retrieval results (1/3):
Retrieval is performed using model weights, to visualize each
model we use the set of all the images that were used to fine-
tune the model.



Figure 19. Additional non-cherry picked retrieval results (2/3):
Retrieval is performed using model weights, to visualize each
model we use the set of all the images that were used to fine-
tune the model.

Figure 20. Additional non-cherry picked retrieval results (3/3):
Retrieval is performed using model weights, to visualize each
model we use the set of all the images that were used to fine-
tune the model.
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