
Appendix
We make the code available on https://github.
com/vita-epfl/MotionMap.

A. Algorithm: Motion Transfer
We use ‘motion transfer’ to ensure that different labels y
have the same skeletal size as that of the input x. This is
done to ensure that multimodal ground truths are selected
purely on the motion, and not on the size of the person. We
also follow this reasoning and use motion transfer during the
training and evaluation process.

Algorithm 1: Motion Transfer
/* Transfers the motion from pose sequence

y to skeleton of sequence x */

// Pose sequence for skeletal reference

Input: x ∈ R#framesx×#joints×3

// Pose sequence for motion reference

Input: y ∈ R#framesy×#joints×3

// Pose sequence with skeletal size from x

and motion from y

Output: z ∈ R#framesy×#joints×3

// Get last frame

pose = x[-1]
// Get length for each link in pose

ρ, , = cartesian to spherical(pose)
// Get motion (angles) for each link in

pose

, θ, ϕ = cartesian to spherical(y)
// Reconstruct new pose sequence

z = spherical to coordinates(ρ, θ, ϕ)
return z

B. Implementation Details
We base most of our architecture on those proposed in [1].
Our encoders EX and EY are based on gated recurrent units
(GRU) with a dimensionality of 128. Our pose forecaster D
is the exact same design as BeLFusion. The major difference
is that we predict a concatenation of the input and output
sequence. The uncertainty module is a simple multilayer
perceptron (MLP) that predicts the uncertainty per joint per
time frame. The heatmap model uses a combination of the
GRU encoder, and a one layer MLP, and gives 1×1 convolu-
tional layers. The GRU encoder spatio-temporally encodes
the last three frames of the incoming pose sequence, which
are mapped to the size of the flattened heatmap by the MLP.
After reshaping the output of the MLP to match that of the
heatmap, we pass this to the convolution layers to get our
raw heatmap. The final heatmap is obtained by capping this
output with a sigmoid layer. We use OpenTSNE’s implemen-
tation of t-SNE [37] which also implements the transform

function, a feature missing in the original t-SNE variants.
Finally, the codebook can be implemented as a tensor or as
a dictionary, since the codebook serves as a lookup table
where the queries (or keys) are locations on the heatmap of
type integer.

C. Dataset: Details
Human3.6M [39] consists of motion-captured poses of seven
publicly available subjects performing 15 actions. We follow
the protocol proposed by [1]. The first five publicly available
subjects (S1, S5, S6, S7, S8) of the dataset are used for
training, and the last two (S9, S11) for testing. The dataset
consists of 32 keypoints in total, from which 17 are selected.
We zero-center them around the pelvis joint, and thus the the
remaining 16 joints are forecasted with respect to the pelvis.
Videos of this dataset have been recorded at 50 fps, and we
take 0.5 seconds (25 frames) as input and forecast the next 2
seconds (100 frames).

AMASS [38] is a collection of various datasets containing
3D human poses. Following [1], we utilize 11 sets (406
subjects) from this collection for training and 7 sets (54
subjects) for testing. The dataset contains videos at 60 fps
after downsampling. We use 0.5 seconds (30 frames) as
observation and forecast the next 2 seconds (120 frames). We
also downsampled the input data of AMASS by increasing
the stride to reduce the training time.

D. Additional Quantitative Results
We report our results by restricting the multimodal ground
truth to the testing split only. We observe that across both
datasets the quantitative results are similar across different
methods. While DivSamp is highly diverse, this does not
necessarily translate to accurately predicting possible fu-
tures. A major observation is that while MotionMap is much
more effective in recalling transitions from the test set (Table
1), this does not come at the cost of general performance,
as evident by these results (2. 3). Finally, we note that
restricting the multimodal ground truth to the testing split
limits the diversity of modes in the ground truth. In Fig-
ure 14, we demonstrate that the AMASS testing dataset does
not adequately represent the training data, with the testing
multimodal ground truth missing the majority of modes. As-
suming that the test split contains only five samples, each test
sample would have between one and five multimodal ground
truths. Furthermore, a discrepancy in the distributions of the
train and test split means that the multimodal ground truths
for the test set share no commonalities with the train set.

E. Additional Qualitative Results
We have provided some examples of generated future fore-
casts in the format of GIFs which are included in the supple-
mentary materials in a folder called: GIFs. In the aforemen-



Table 2. Human3.6M dataset: All baselines are limited to 5 forecasts. Our method, unconstrained by the number of modes, is adjusted to
produce an equal number of predictions. Metrics are reported in meters.

Method Diversity (↓) ADE (↓) FDE (↓) MMADE (↓) MMFDE (↓)

Zero-Velocity 0.000 0.597 0.884 0.616 0.884
TPK [40] 6.727 0.568 0.757 0.582 0.756
DLow [3] 11.687 0.602 0.818 0.616 0.818
GSPS [41] 14.729 0.584 0.791 0.602 0.791
DivSamp [4] 15.571 0.545 0.782 0.574 0.787
BeLFusion [1] 7.323 0.472 0.656 0.497 0.661
CoMusion [2] 7.624 0.460 0.678 0.505 0.687

MotionMap 8.190 0.491 0.642 0.505 0.643

Table 3. AMASS dataset: All baselines are limited to 6 forecasts. Our method, unconstrained by the number of modes, is adjusted to produce
an equal number of predictions. Metrics are reported in meters.

Method Diversity (↓) ADE (↓) FDE (↓) MMADE (↓) MMFDE (↓)

Zero-Velocity 0.000 0.755 0.992 0.776 0.998
TPK [40] 9.284 0.762 0.867 0.763 0.864
DLow [3] 13.192 0.739 0.842 0.733 0.846
GSPS [41] 12.472 0.736 0.872 0.741 0.871
DivSamp [4] 24.723 0.795 0.926 0.801 0.928
BeLFusion [1] 9.643 0.620 0.751 0.632 0.751
CoMusion [2] 10.854 0.601 0.768 0.629 0.797

MotionMap 9.483 0.624 0.729 0.643 0.736

tioned visualization, the color blue refers to the input pose
sequence, and red to the corresponding future.

E.1. Controllability
Our method enables control over the selection of modes.
With the predicted MotionMap and its identified local max-
ima, we can focus solely on the most probable futures (Fig-
ure 9) or, if needed, select a less likely future (using meta-
data) as required by the application’s requirements (Fig-
ure 10). To better show this possibility we have provided a
demo.

E.2. Uncertainty
We have illustrated the predicted uncertainty plots for all
the future predicted poses and the reconstructed past in Fig-
ure 13. It is observable that the model is more certain about
reconstructing the past since it is encoded as the input. The
various trends in uncertainty demonstrate the dependency of
the predicted uncertainty on the motion. Furthermore, joints
that have greater movement or are further from the pelvis
experience higher levels of uncertainty.

E.3. Sampling Comparison
We compare the predicted MotionMaps with the ground truth
heatmaps in Figure 11. MotionMap is encouraged to predict
a higher number of modes than present in the ground truth

to identify rare transitions. Our visualizations confirms that
MotionMap identifies other transitions while not missing out
on the original ground truth motions. These miscellaneous
transitions are learned by the MotionMap model from trends
across the dataset.

How well can state-of-the-art baselines predict multi-
modality without explicitly encoding multimodal transitions?
To study this, we collected predictions for each of the base-
lines for each input pose seqeuence. We then encode these
pose forecasts into two dimensions as described in Section
4.2.1. Next, we overlay them on the ground truth heatmap
to identify the differences in the predictions and the ground
truth. We observe that baselines that rely on anchors al-
though diverse predict transitions which are unlikely for the
given pose sequence. This also tallies with our quantitative
evaluation. While this effect is reduced for diffusion based
baselines, the methods are less diverse and do not capture
rare modes. In contrast, MotionMap captures both common
and rare mode since they are encoded in the form of local
maxima.



Figure 9. We visualize the modes (in red crosses) predicted by MotionMap. By hovering over the demo tool, we can view the decoded future
poses corresponding to the given input pose sequence. We have uniformly selected eight frames in each sequence to demonstrate the motion
and stacked them on top of each other at the end (the frame on the very right of each visualized sequence) to represent the amount of
motion in each sequence.

Figure 10. We show different strategies for controlled selection of non-maxima forecasts: (a) Selecting samples in the vicinity of a model
selected mode. (b,c,d) Based on the distribution of action labels. For instance, we could generate futures for rarer transitions such as sitting
down (b) on a chair (c) on the floor, or (d) lying on the floor.



Figure 11. Qualitative comparison between MotionMap and the ground truth multimodal heatmap. Our observations indicate that MotionMap
effectively captures the diversity of the modeled scenarios. The presence of a larger number of peaks in MotionMap is a result of learning
generalized behaviour across the training split.
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Figure 12. We overlay predictions for each baseline on the ground truth heatmap, for each of the three input pose sequences. The encoding
of these predictions is shown as red crosses. For MotionMap, we directly overlay the predicted MotionMap (with crosses for maxima) on the
ground truth heatmap. We note that methods are either highly diverse but unrealistic or are less diverse but predict likely futures. In contrast,
MotionMap predicts both: common and rare modes since both are explicitly encoded in the training process.



Figure 13. We show additional forecasts along with the predicted uncertainty per joint and time frame.

Figure 14. We plot the density map of ground truth sequences Y for the training and testing split of AMASS suggested by [1]. We observe
that the splits can be highly imbalanced, and have a significant impact on determining the multimodal ground truth for a sample.


