
Appendix

A. Conditional Label Diffusion Models and
Feature Introduction Analyzing

In this section, our main goal is to derive the posterior distri-
bution of the forward diffusion process when image features
are used as controlling conditions and to analyze its differ-
ences and connections with the unconditional posterior dis-
tribution. Following the method used in DDPM [6], We first
define a conditional Markov process q̂ (where q represents
the unconditional label diffusion process in Section 3) in
which Gaussian noise ϵ ∼ N (0, I) is incrementally added
to the labels for diffusion. The addition of noise remains the
same whether features are conditioned or not, leading to the
following definition:

q̂ (y0) := q (y0) , (1)

q̂ (yt | yt−1, x) := q (yt | yt−1) , (2)

q̂ (y1:T | y0, x) :=
T∏

t=1

q̂ (yt | yt−1, x). (3)

With knowledge of the forward process’s prior distribution,
we can derive the prior distribution of q̂:

q̂ (yt | yt−1) =

∫
x

q̂ (yt, x | yt−1) dx (4)

=

∫
x

q̂ (yt | yt−1, x) q̂ (x | yt−1) dx (5)

=

∫
x

q (yt | yt−1) q̂ (x | yt−1) dx (6)

= q (yt | yt−1)

∫
x

q̂ (x | yt−1) dx (7)

= q (yt | yt−1) (8)
= q̂ (yt | yt−1, x) , (9)

which indicates that conditions do not affect the prior
distribution in the forward process. Similarly, we can derive
the joint distribution of q̂:

q̂ (y1:T | y0) =
∫
x

q̂ (y1:T , x | y0) dx (10)

=

∫
x

q̂ (x | y0) q̂ (y1:T | y0, x) dx (11)

=

∫
x

q̂ (x | y0)
T∏

t=1

q̂ (yt | yt−1, x)dx (12)

=

∫
x

q̂ (x | y0)
T∏

t=1

q (yt | yt−1)dx (13)

=

T∏
t=1

q (yt | yt−1)

∫
x

q̂ (x | y0) dx (14)

=

T∏
t=1

q (yt | yt−1) (15)

= q (y1:T | y0) . (16)

Based on this result, we can further derive the marginal
distribution of q̂:

q̂ (yt) =

∫
y0:t−1

q̂ (y0, . . . , yt) dy0:t−1 (17)

=

∫
y0:t−1

q̂ (y0) q̂ (y1, . . . , yt | y0) dy0:t−1 (18)

=

∫
y0:t−1

q (y0) q (y1, . . . , yt | y0) dy0:t−1 (19)

=

∫
y0:t−1

q (y0, . . . , yt) dy0:t−1 (20)

= q (yt) . (21)

Using the prior and marginal distributions, we can demon-
strate that the unconditional posterior distribution aligns
with q:

q̂ (yt−1 | yt) =
q̂ (yt−1, yt)

q̂ (yt)
(22)

=
q̂ (yt | yt−1) q̂ (yt−1)

q̂ (yt)
(23)

=
q (yt | yt−1) q (yt−1)

q (yt)
(24)

=
q (yt−1, yt)

q (yt)
(25)

= q (yt−1 | yt) . (26)

By incorporating features as posterior conditions, we esti-
mate the posterior distribution of the conditional forward
process using Bayes’ rule:

q̂ (yt−1 | x) = q̂ (yt−1) q̂ (x | yt−1)

q̂(x)
. (27)

Continuing, by adding the known distribution yt as a condi-
tion for generation, we can obtain:

q̂ (yt−1 | yt, x) =
q̂ (yt−1 | yt) q̂ (x | yt−1, yt)

q̂ (x|yt)
(28)

=
q (yt−1 | yt) q̂ (x | yt−1, yt)

q̂ (x|yt)
(29)

=
q (yt−1 | yt) q̂ (x | yt−1)

q̂ (x|yt)
(30)

= q (yt−1 | yt) elog q̂(x|yt−1)−log q̂(x|yt),
(31)

where the derivation of q̂ (x | yt−1, yt) = q̂ (x | yt−1) from
Eq. 29 to Eq. 30 is as follows:

q̂ (x | yt−1, yt) = q̂ (yt | yt−1, x)
q̂ (x | yt−1)

q̂ (yt | yt−1)
(32)

= q̂ (yt | yt−1)
q̂ (x | yt−1)

q̂ (yt | yt−1)
(33)

= q̂ (x | yt−1) . (34)

We note that the term e−log q̂(x|yt) in Eq. 31 is independent
of the distribution of yt−1, thus we set this part as a constant
C:

q̂ (yt−1 | yt, x) = C · q (yt−1 | yt) elog q̂(x|yt−1), (35)

where q (yt−1 | yt) is the unconditional posterior distribu-
tion of the diffusion process, modeled as a Gaussian distri-
bution with mean µ̃t (yt, y0) and variance β̃t, respectively.
Simplifying the covariance from the probability density for-
mula, we can get:

q̂ (yt−1 | yt, x) ∝ e−∥yt−1−µ̃t∥2/2β̃t+log q̂(x|yt−1). (36)

Given that the number of time steps T in the diffu-
sion process is large enough and the diffusion coeffi-
cient βt is small enough, the variance of the distribution
q̂ (yt−1 | yt) is sufficiently small and concentrated near µ̃t.
We perform a Taylor expansion around yt−1 = µ̃t for
log q̂ (x | yt−1) up to the first derivative, for simplicity, we
let ∇yt−1 log q̂ (x | yt−1)|yt−1=µ̃t

= g, which is essentially
the gradient of the distribution at that point:

log q̂(x | yt−1) ∝ log q̂(x | yt−1)|yt−1=µ̃t
(37)

+ (yt−1 − µ̃t)g + o(yt−1). (38)

Thus, the posterior distribution can be estimated as:

q̂ (yt−1 | yt, x) ∝ e−∥yt−1−µ̃t∥2/2β̃t+(yt−1−µ̃t)g+C1 (39)

∝ e−(∥yt−1−µ̃t−β̃tg∥
2
)/2β̃t+C2 (40)

= N
(
yt−1; µ̂t, σ

2
t I
)
, (41)

where µ̂t =
βt

√
ᾱt−1

1−ᾱt
y0 +

(1−ᾱt−1)
√
αt

1−ᾱt
yt +

σ2
t∇yt−1 log q̂(x | yt−1) and σt =

√
β̃t =

√
1−ᾱt−1

1−ᾱt
βt.

To ensure the correct introduction of conditions, we need
to incorporate the decoding gradient into the mean during
model prediction. Based on the minor nature of random
perturbations (yt−1 vs. yt) in the diffusion process [14],
we define a decoding function Fϕ(yt, x, t) = log pϕ(x|yt)
to guide the mean shift, ensuring the dependency of label
generation on image features.

B. Unconditional directional diffusion model

Based on the additivity of Gaussian noise, we derive the
jump diffusion formula from y0 to yt without requiring
single-step continuous diffusion:

yt =yt−1 + αtyd + βtϵt−1, (42)

=yt−2 + (αt−1 + αt)yd + (
√

β2
t−1 + β2

t)ϵt−2 (43)

=... (44)
=y0 + ᾱtyd + β̄tϵ, (45)

where ϵt−1, . . . ϵ ∼ N (0, I), ᾱt =
∑t

i=1 αi and β̄t =√∑t
i=1 β

2
i . yd is the deviation between yn and y0 (i.e.,

yd = yn − y0), representing the directional shift contained
in the diffusion from yt−1 to yt. We define the forward dis-
tribution of the unconditional directed diffusion model as
follows:

q (yt | yt−1, yd) = N
(
yt; yt−1 + αtyd, β

2
t I
)
, (46)

q (y1:T | y0, yd) :=
T∏

t=1

q (yt | yt−1, yd) (47)

= N
(
yt; y0 + ᾱtyd, β̄

2
t I
)
, (48)

Similar to DDPM, we can represent the transfer proba-
bilities q(yt−1|yt, y0, yd) by Bayes’ rule:

q(yt−1|yt, y0, yd) = q(yt|yt−1, y0, yd)
q(yt−1|y0, yd)
q(yt|y0, yd)

,

(49)

where q(yt−1|y0, yd) = N (yt−1; y0 + ᾱt−1yd, β̄
2
t−1I)

and by the Markovian property of the forward process, yt
will not be affected by y0, so we have q(yt|yt−1, y0, yd) =
q(yt|yt−1, yd) = N (yt; yt−1 + αtyd, β

2
t I). Therefore, the

posterior probability distribution of the forward process can
be derived as follows:

q(yt−1|yt, y0, yd) = N (yt−1;µt, σtI), (50)

∝ exp

(
−1

2
(Ay2t−1 − 2Byt−1 + C)

)
, (51)

where A =
β̄2
t

β2
t β̄

2
t−1

, B = yt−αtyd

β2
t

+ ᾱt−1yd+y0

β̄2
t−1

and

C(yt, y0, yd) is not related to yt−1. Then, we can get µt

and σt in Eq. 50:

µt = B/A (52)

=
β̄2
t−1

β̄2
t

yt +
β2
t ᾱt−1 − β̄2

t−1αt

β̄2
t

yd +
β2
t

β̄2
t

y0 (53)

= yt − αtyd −
β2
t

β̄t
ϵ, (54)

σt = 1/A =
β2
t β̄

2
t−1

β̄2
t

. (55)

In the reverse process, we define the predictive distri-
bution of the model as pθ(yt−1|yt). The diffusion model
is learned by optimizing the evidence lower bound with
stochastic gradient descent:

LELBO = Eq

[
LT +

T∑
t>1

Lt−1 + L0

]
. (56)

Following [6], we only consider Lt−1:

Lt−1 = DKL(q(yt−1|yt, y0, yd)||pθ(yt−1|yt)) (57)

= E

[∥∥∥∥yt − αtyd −
β2
t

β̄t
ϵ− (yt − αty

θ1
d − β2

t

β̄t
ϵθ2)

∥∥∥∥2
]
,

(58)

where DKL denotes KL divergence. yθ1d and ϵθ2 represent
the prediction of orientation difference and noise with two
networks, respectively. By reparameterizing, the objective
can eventually be simplified to:

Ld = || yd − yθ1
d (yt,yn,x, t) ||

2
, (59)

Lϵ = || ϵ− ϵθ2 (yt,yn,x, t) ||2. (60)

C. Conditional directional diffusion model

This Section mainly combines the relevant theories of con-
ditional label diffusion model (Section A) and uncondi-
tional directional diffusion model (Section B), and analyzes
the feature introduction method of conditional directed la-
bel diffusion model, which is also the theory that our DLD’s
network architecture mainly relies on. Similar to condi-
tional label diffusion model, We define the conditional for-
ward distribution q̂ as follows:

q̂ (y0) := q (y0) , (61)

q̂ (yt | yt−1, yd, x) := q (yt | yt−1, yd) , (62)

q̂ (y1:T | y0, x) :=
T∏

t=1

q̂ (yt | yt−1, yd, x) (63)

=

T∏
t=1

q (yt | yt−1, yd, x) (64)

=

T∏
t=1

q (yt | yt−1, yd). (65)

This means that the diffusion process of the label is not af-
fected by any image features, and the related theory of its
forward process is consistent with Eq. 42 to Eq. 48. To esti-
mate the posterior distribution q (yt−1 | yt, yd, x), similarly
to the analysis of the conditional label diffusion model, we
separate it into the relevant and irrelevant components of the
image feature x using the Bayes’ rule:

q̂ (yt−1 | yt, yd, x) = q̂ (yt−1 | yt, yd)
q̂ (x | yt−1, yt, yd)

q̂ (x|yt, yd)
(66)

= q (yt−1 | yt, yd)
q̂ (x | yt−1, , yd)

q̂ (x|yt, yd)
(67)

= C · q (yt−1 | yt, yd) q̂ (x | yt−1, yd) ,
(68)

where C represents q̂ (x|yt, yd)−1, which means a constant
term independent of the distribution of yt−1. Then we use
the probability density function of the Gaussian distribution
and the Taylor expansion to obtain the exponential form:

q (yt−1 | yt, yd, x) ∝ e−∥yt−1−µt∥2/2σt+log q̂(x|yt−1,yd)

(69)

= N (yt−1; µ̂t, σ̂tI) , (70)

µ̂t = µt + σ̂t∇yt−1
log q̂ (x|yt−1,yd) (71)

=
β̄2
t−1

β̄2
t

yt +
β2
t ᾱt−1 − β̄2

t−1αt

β̄2
t

yd +
β2
t

β̄2
t

y0 (72)

+ σ̂t∇yt−1 log q̂ (x|yt−1,yd) (73)

= yt − αtyd −
β2
t

β̄t
ϵ+ σ̂t∇yt−1 log q̂ (x|yt−1,yd)

(74)

σ̂t = σt =
β2
t β̄

2
t−1

β̄2
t

. (75)

To ensure the correct introduction of conditions, we de-
fine a decoding function Fϕ(yt, yd, x, t) = log pϕ(x|yt, yd)
to guide the mean shift, ensuring the dependency of la-
bel generation on image features. The diffusion model’s

network architecture, depicted in Figure C.1, consists of a
ResNet encoder and a series of feedforward layers. The
L1 decoding layer plays a crucial role by contributing
the Fϕ(yt, yd, x, t) as guidance. The network inputs are
(x, y0, yn), randomly sampled t and ϵ, where y0 and yn is
transformed into yt by Eq. 45 and then concatenated with
fext(x). After L1’s decoding, it merges with the normal-
ized encoding features of ResNet through a Hadamard prod-
uct, incorporates time positional encoding, and uses a series
of feedforward networks, batch normalization, and Softplus
activation to predict the directional deviation yθ1d or noise
term ϵθ2 .

D. Deterministic Implicit Inference
This section primarily analyzes the inference process of the
DLD algorithm. Since the diffusion process involves labels
and is directed towards classification tasks, it is imperative
to reduce the uncertainty in the inference process and ex-
pedite it as much as possible, aligning with the method of
denoising diffusion implicit models (DDIM) [16]. With a
trained directional diffusion model, we proceed as follows:

q (yt | y0, yd) = N
(
yt; y0 + ᾱtyd, β̄

2
t I
)
, (76)

yt = y0 + ᾱtyd + β̄tϵ, (77)

where ϵ ∼ N (0, I). Similar to DDIM, we de-
fine a non-Markovian nature for the forward
posterior distribution qσk

(
yτk−1

| yτk , y0, yd
)

=

N
(
yτk−1

; y0 +Myτk +Nyd, σk
2I
)
, where M and

N are coefficients to be determined, and σk ≥ 0. τ is a
subsequence of [1, · · · , T], with τK = T , e.g., if T = 1000
and K = 10, then τ = [1, 100, · · · , 900 , 1000]. From the
empirical form of the posterior distribution, we have:

yτk−1
= Ay0 +Byd + Cyτk + σkϵ (78)
= Ay0 +Byτk + C(y0 + ᾱτkyd + β̄τk ϵ̇) + σkϵ

(79)

= (A+ C)y0 + (B + Cᾱτk)yd +
√

C2β̄2
τk

+ σ2
kϵ

(80)

= y0 + ᾱτk−1
yd + β̄τk−1

ϵ̇, (81)

By the method of undetermined coefficients, A, B and
C are determined:

A = 1−

√
β̄2
τk−1

− σ2
k

β̄τk

, (82)

B = ᾱτk−1
−

√
ᾱτk β̄

2
τk−1

− σ2
k

β̄τk

, (83)

Algorithm D.1 DLD inference
Input: Testing set D = {X}, Two trained network fθ1 and
fθ2
Output: y0

1: Sample data x ∼ D,Sample label yT ∼ N (0, I)
2: for k = K to 1 do
3: z ∼ N (0, I) if k > 1, else z = 0
4: Predict yθ1d and ϵθ2 using networks
5: Inference yτk−1

= yτk − (ᾱτk − ᾱτk−1
)yθ1d − (β̄τk −√

β̄2
τk−1

− σ2
k)ϵθ2 + σkz

6: end for

C =

√
β̄2
τk−1

− σ2
k

β̄τk

. (84)

We reorganize the inference distribution, and since the y0
term is unknown during actual inference, we estimate it us-
ing y0 = yτk − ᾱτky

θ1
d − β̄τkϵθ2 . The inference process can

be simplifying as:

yτk−1
= yτk − (ᾱτk − ᾱτk−1

)yθ1d

− (β̄τk −
√
β̄2
τk−1

− σ2
k)ϵθ2 + σkz (85)

The detailed inference process is outlined in Algorithm D.1.
For classification tasks, following the DDIM approach, we
can achieve an implicit probabilistic diffusion model, turn-
ing the inference into a deterministic process given yT by
setting σk = 0 [13]. This modification reduces the variabil-
ity during inference, ensuring more consistent and reliable
label predictions crucial for classification accuracy. To bet-
ter illustrate the inference process of DLD, we visualized its
5-step classification performance on the CIFAR-10 dataset
using t-SNE, based on the feature space of ViT (see Figure
D.1). Compared to LRA-diffusion, our inference is faster,
more accurate, and results in fewer incorrect predictions and
clearer category boundaries after inference completion.

E. Experimental Setup and Details
E.1. Generation of Instance-dependent Noise
We conducted experiments on the CIFAR-10 and CIFAR-
100 datasets with simulated label noise. To closely mimic
the distribution of label noise in real-world scenarios, we
uesd a deep neural network to simulate instance-dependent
noise (IDN) [2]. Specifically, we trained a WideResNet
[19] for T epochs and recorded the average prediction
for each sample throughout the training process as St =
[f t (xi)]

n
i=1 ∈ Rn×c . Then we calculated the mislabeling

score for each sample as N (xi) = maxk ̸=yiSi,k and the
potential noise label as ỹ (xi) = argmaxk ̸=yi

Si,k, intro-
ducing label noise to the top p% of samples based on the

y0 , t

Random Diffusion

yt

Embedding
fext (x)

ResNet encoder

x

Embedding t

Network architecture

L1L2L3L4

Concatenation

Hadamard product

Concatenation

Hadamard product

Directional Diffusion

Forward Process

Figure C.1. The network architecture of the directional diffusion model. The input to the network consists of four elements: y0, t
(represented by yellow blocks), x and fext(x) (represented by orange blocks). Blue components represent trainable network layers, while
gray components represent normalization activation layers. When a dual-network architecture is employed, the output of each network is
predicted as random noise or directional deviation (represented by pink blocks). In contrast, when a single network is used to accelerate
training, it outputs both random noise and directional bias simultaneously through two channels.

Algorithm D.2 IDN Generation

1: Input: Clean dataset D = {(xi, yi)}ni=1, a targeted
noise fraction p, epochs T

2: Initialize a network f
3: for t = 1 to T do
4: for batches (xi, yi)i∈B do
5: Train f on (xi, yi)i∈B using cross-entropy loss:

LCE = − 1

|B|
∑
i∈B

log
(
f t
yi
(xi)

)
6: end for
7: Record output St = [f t(xi)]

n
i=1 ∈ Rn×c

8: end for
9: Compute N(xi), ỹ(xi) using {St}Tt=1

10: Compute the index set I = p%argmax1≤i≤nN(xi)
11: Flip yi = ỹi if i ∈ I , else keep yi = yi
12: return a dataset with IDN: D̃ = {(xi, yi)}ni=1

mislabeling score. The algorithm D.2 details the process
for simulating IDN, indicating that samples more prone to

prediction errors are more likely to be labeled as noise, and
the noise labels originate from the category most similar to
their features.

As depicted in Figure E.1, the experimentally simulated
noise labels are highly instance-dependent in the CIFAR-
10 dataset, with some pictures also being difficult for the
human eye to distinguish. For instance, most of the auto-
mobile instances in the second row are incorrectly labeled
as trucks, while a green automobile in the fourth column
is labeled as a frog. Conversely, the truck samples in the
last row are mostly labeled as automobile. This indicates
that the IDN in our experiment has a degree of confusion
approximating real-world noise, and such a simulated noise
environment can better reflect the real performance of the
robust learning model.

E.2. Experimental Results on CIFAR with Class-
conditional Noise

Although class-conditional noise (CCN) is easier to handle
than IDN noise, we also conducted experiments on simu-
lated CCN datasets to further demonstrate the comprehen-
siveness of the DLD model. The noise settings in the ex-
periment are identical to those in DivdeMix [10]. The ex-

(a) Inference process demonstration of LRA-diffusion using 10-step DDIM

(b) Inference process demonstration of DLD using 5-step DDIM

Figure D.1. Comparison of inference processes for different diffusion models on the CIFAR-10 dataset (with 40% IDN), visualized using
t-SNE [17] on the ViT feature space. Data points are color-coded according to the highest probability value in the intermediate/final label
vectors, corresponding to their respective categories. The black dashed box highlights regions with significant inference errors.

perimental results are presented in Table E.1. As shown
in Figure E.2, we visualized three noise distributions (i.e.,
IDN, Symmetric, Asymmetric) on CIFAR-10 using t-SNE
[17] with ViT feature spaces. It is evident that, at the same
noise ratio (40%), the IDN contamination is more concen-
trated in categories with greater similarity, such as truck
vs. automobile and cat vs. dog (see Figure E.2b), result-
ing in visibly higher contamination compared to Symmetric
and Asymmetric noise. Notably, in simulating Asymmet-
ric noise, the sample labels are flipped in only one direction
(e.g., truck to automobile), meaning the actual noise ratio
does not reach the intended value (see Figure E.2d). DLD
consistently maintains superior performance against sym-
metric and asymmetric noise of various proportions. This is
particularly evident when the number of categories is large
and the noise proportion is high (e.g., CIFAR100 with 80%
CCN). Its classification accuracy shows significant advan-
tages compared to other algorithms.

E.3. Training Efficiency Analysis

The time overhead and model parameter comparison in
Figure E.3 highlight the significant cost-efficiency of our
DLD. Compared to collaborative or iterative training archi-
tectures like CC and DivideMix, DLD accelerates training
by 40% to 100% and reduces model parameters by 30%,
which is groundbreaking. Furthermore, we can reduce the
dual-network model to a single-network model with dual-

channel output, maintaining performance advantages while
lowering the training cost to the LRA-diffusion baseline.
Detailed settings are available in F.1. The high efficiency
and resource savings of DLD arise from its sample pre-
correction process, which can be pre-computed and cached
before training, eliminating the need for redundant calcu-
lations. In other words, it is a one-time process, meaning
that when handling large-scale datasets, its time cost is neg-
ligible compared to model training, yet its contribution to
enhancing classification performance is significant. In addi-
tion, the model architecture of DLD is lightweight enough,
which can be seen from its number of parameters.

E.4. Real-world Dataset Details
Animal-10N consists of 60,000 images, with 50,000 in the
training set and 5,000 in the test set. These images are
sourced from Google and Bing searches of five pairs of vi-
sually similar animals, such as cats and servals. Due to the
resemblance between these category pairs, there is a high
likelihood of confusion, resulting in approximately 8% mis-
labeling in the training set. However, the samples in the test
set have been meticulously inspected by experts and carry
accurate and reliable labels.

Clothing1M includes 1 million clothing images from
various online shopping sites. These images are automat-
ically categorized into 14 classes based on keywords in
the surrounding text, with about 38.5% of the labels be-

Figure E.1. IDN labels (on the top of each image) generated on CIFAR-10. Each row corresponds to instances of the same true class, with
the first two columns representing correct examples without induced noise, and the last eight columns showing instances with noisy labels.

Table E.1. Comparison with state-of-the-art methods in test accuracy(%) on CIFAR with class-conditional noise.

Dataset CIFAR10 CIFAR100

Noise Type Sym. Asym. Sym.

Noise Rate 20% 40% 60% 80% 40% 20% 40% 60% 80%

CARD [5] 86.81 80.47 77.31 62.90 85.01 62.07 48.73 44.57 21.17
Co-teaching [4] 89.53 86.75 83.57 67.43 87.53 65.65 53.38 49.87 27.93
GCE [20] 92.40 91.11 87.24 77.51 88.51 69.41 59.54 55.32 31.19
DMI [18] 94.07 93.06 90.37 86.83 87.47 73.91 68.66 64.38 48.25
DivideMix [10] 96.14 95.64 93.67 93.24 93.46 77.32 76.67 71.06 60.24
ELR+ [12] 95.83 95.89 92.61 93.33 93.01 77.65 75.43 72.51 60.80
EPL [9] 96.13 96.07 95.99 95.89 95.01 77.65 77.13 76.22 72.07
LRA-diffusion [1] 96.31 96.27 95.82 95.76 95.37 78.01 77.59 76.34 73.57
DLD (Ours) 97.22 97.15 97.11 96.48 97.13 78.96 78.21 78.08 76.82

(a) Clean (b) IDN

(c) Symmetric noise (d) Asymmetric noise

Figure E.2. Comparison of t-SNE [17] visualization on CIFAR10 with different noise distributions at 40% noise rates. The black dashed
box highlights regions with significant noise contamination.

ing noisy. The dataset also contains a clean subset of the
training, validation, and test sets, which have been manu-
ally refined and contain approximately 47.6k, 14.3k, and
10k images, respectively. However, we opt not to use the
clean training data and instead use only the noisy labeled
data for model training.

WebVision and ILSVRC2012 feature a total of 2.4
million images collected from Google and Flickr searches
based on the ILSVRC12 classification system. Building
on previous research, we selected the top 50 classes from
the Google image subset for model training and evaluated
performance on the validation sets of both WebVision and
ILSVRC12.

E.5. Implementation Details

In our experiments, we configured ResNet34 and ResNet50
(depicted as blue ResNet blocks in Figure C.1) as trainable
encoders for the CIFAR datasets and real-world datasets,
respectively. For the CIFAR dataset experiments, all for-
ward layers were set to a dimension of 512, while for the
real-world datasets, the dimension was set to 1024. We
trained the networks for 200 epochs using the Adam op-
timizer with a batch size of 256. The initial learning rate
was set at 0.001, with an adaptive learning rate adjustment
strategy that included a warm-up phase and a half-cycle co-
sine decay phase. For the diffusion coefficients αt and βt,
similarly to RDDM [11], we set αt to linearly decrease over

2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0 1 8 0

C C

S A N M

D i v i d e M i x

D I S C

D L D

D L D - 1 N e t

L R A - d i f f u s i o n

1 6 0

1 3 0

1 2 5

1 1 2

7 6

3 9

3 5

T i m e c o s t f o r o n e e p o c h (S e c)
(a)

2 0 3 0 4 0 5 0 6 0 7 0

C C

S A N M

D i v i d e M i x

D I S C

D L D

D L D - 1 N e t

L R A - d i f f u s i o n

5 5 . 8 4

6 3 . 9 8

5 5 . 8 4

5 4 . 3 8

4 2 . 7 2

2 1 . 5 7

2 1 . 3 6

M o d e l P a r a m e t e r s (M i l l i o n s)
(b)

Figure E.3. Comparison of the training time (sec) and model parameter count (Millions) for different LNL methods. The results for each
method are averaged over one epoch of training on the CIFAR-10 dataset using an NVIDIA A800 GPU.

� �� �� �� �� ���

��

��

��

���

Ac
cur

acy
 (%

)

K

 2 0 % I D N

��

��

��

���

 4 0 % I D N

��

��

��

���

 6 0 % I D N

(a) CIFAR-10

� �� �� �� �� ���

��

��

��

��

��

Ac
cur

acy
 (%

)

K

 2 0 % I D N
��

��

��

��

��

 4 0 % I D N

��

��

��

��

��

 6 0 % I D N

(b) CIFAR-100

Figure E.4. The effect of different K values on the classification accuracy (%) of the DLD model under various IDN levels on the CIFAR
dataset. The gray background highlights the range of K values where the accuracy is relatively stable and exhibits robust performance
across different IDN levels.

time t and βt to linearly increase, as described by the fol-
lowing formula:

P (x, a) := xa/

∫ 1

0

xadx,wherex = t/T. (86)

Similar to FixMatch [15], we employed both weak and
strong augmentations to create two different views of the
dataset during the sample repartitioning phase. Weak aug-
mentation included resizing, random horizontal flipping,
and random cropping, while strong augmentation employed
the random augmentation (n = 2, m = 10) technique
[3], which randomly selects two out of fifteen augmenta-

tion techniques and applys them to the images with 10%
intensity.

To analyze the impact of K values on model perfor-
mance, we conducted tests on the CIFAR dataset under
varying IDN levels with K ranging from 1 to 100. Our
experiments showed that the DLD’s accuracies remained
relatively stable for k values between 30 and 70 (see Fig-
ure E.4). Additionally, we observed that as the noise ra-
tio increases, the optimal value of K also rises. However,
excessively large values of K increase computational costs
without yielding significant improvements in model perfor-
mance. Considering these factors, we set K = 50 as the de-

fault setting for DLD, as it achieves both stability and high
accuracy across various noise conditions. This phenomenon
can be explained by the need to expand the neighborhood
size to stabilize label distributions when noisy information
becomes prevalent, thereby improving the model’s robust-
ness. All experiments were conducted on eight NVIDIA
A800 GPUs.

F. More Details of Ablation Studies

F.1. Cross ablation experiments
We designed a cross-ablation experiment to further ana-
lyze the contributions of the two stages in the DLD frame-
work: the DLD model and the pre-correction method.
The experimental results, as shown in Table F.1, indicate
that alternative configurations exhibit a performance gap
compared to the complete DLD framework (pre-correction
method with DLD dual-network model). Among these, the
DLD-1Net configuration shows the smallest gap, indicating
that a single network can reduce computational overhead
while maintaining performance. The primary difference be-
tween LRA + DLD w/o pre-correction and LRA-diffusion
lies in the choice of the diffusion model (DLD dual-model
vs. standard diffusion model). Results show that, under
otherwise consistent conditions, the DLD dual-model im-
proves noise robustness more effectively. The primary dif-
ference between pre-correction + LRA-diffusion w/o LRA
and LRA-diffusion lies in the use of the pre-correction
method. While pre-correction improves the performance
of the standard diffusion model, its effect is less significant
than that of replacing it with the DLD model, suggesting
that the contribution of DLD outweighs the pre-correction
strategy. In conclusion, the combination of the two stages
leads to more significant improvements. The DLD model
is able to leverage more accurate diffusion information to
achieve a greater effect.

F.2. Contribution of Pre-trained Features
We initially conducted research on different settings of the
pre-trained feature extractor fext and performed ablation
experiments comparing our method with DISC, CARD, and
LRA-diffusion. Both the CARD and LRA-diffusion mod-
els require the integration of a pre-trained model (CARD
need a pre-trained classifier), using fext to guide the for-
ward and reverse processes, whereas DISC is an optimal
semi-supervised LNL method that does not require any pre-
trained models. We selected three pre-trained feature ex-
tractors for our experiments:
• ResNet34: two ResNet34 architectures pre-trained

through self-supervised contrastive learning on unlabeled
datasets;

• SimCLR: a self-supervised model pre-trained on millions
of unlabeled images using contrastive learning. It lever-

ages a large ResNet backbone with millions of parameters
to learn powerful visual representations;

• ViT-L/14: a vision transformer (ViT) model with 306
million parameters, pre-trained on the Imagenet dataset
containing over 4 million image-text pairs, providing our
framework with exceptional feature extraction capabili-
ties.

Table F.2 shows that when all three models use the same
pre-trained feature extractor, DLD consistently outperforms
the other two methods, indicating that its superior perfor-
mance arises from capabilities beyond feature extraction.
When combined with ViT-L/14, all three methods perform
optimally, suggesting that ViT-L/14’s ability to map data
into latent space provides more precise label information
for the diffusion model to learn from. The classification per-
formance of DLD combined with the three feature extrac-
tors exceeds that of DISC, although the advantage decreases
as the extractors’ quality diminishes. The performance of
ResNet34 as a feature extractor is the weakest. When com-
bined with it, the performance of the other two models, ex-
cept DLD, is negatively affected by the poor-quality fea-
tures, leading to classification accuracy close to or below
that of DISC. Therefore, in subsequent experimental setups,
we default to using ViT-L/14 as the pre-trained feature ex-
tractor to enhance the generalization ability of DLD.

F.3. Other Hyperparameter Analysis

To further validate the effectiveness of various settings in
the DLD training strategy, we used the results of LRA-
diffusion as the baseline on the CIFAR-100 dataset and
compared different DLD training strategies. These strate-
gies included neighbor selection strategies (using KNN,
or using cosine similarity for neighbor label distribution
collection), label pre-correction strategies (converting the
pre-corrected label results into one-hot labels through the
argmax function, or maintaining original vector labels),
and different use of enhanced image features (using features
of a single view only or using fusion features of two views
as generation conditions). We conducted four sets of control
experiments with the following detailed settings:
• DLD-knn: Using euclidean distance as the KNN label

distribution collector, converting pre-corrected labels to
one-hot labels, and using features of a single view only as
generation conditions;

• DLD-cos: Using cosine similarity as the the KNN la-
bel distribution collector, with other settings identical to
DLD-knn;

• DLD-vector: Retaining vector labels during label pre-
correction, with other settings identical to DLD-cos;

• DLD-ws: Using the mean of image features from two
views as generation conditions, with other settings iden-
tical to DLD-vector.
As shown in Figure F.1, in low noise environments

Table F.1. Results of the cross-ablation experiment on the CIFAR datasets with 40% IDN. DLD-1Net refers to using all components of
the proposed DLD framework (pre-correction method and DLD model) but with a single network architecture, where one network outputs
both the ϵ and yd channels. LRA + DLD w/o pre-correction refers to replacing the pre-correction method in the DLD framework with
the LRA strategy. Pre-correction + LRA-diffusion w/o LRA refers to replacing the pre-correction method in the DLD framework with the
pre-correction method from LRA-diffusion.

Dataset CIFAR-10 CIFAR-100
Method Accuracy Gap Accuracy Gap
DLD 96.49 - 76.03 -
DLD-1Net 96.49 0.00 ↓ 75.91 0.12 ↓
LRA + DLD w/o pre-correction 96.03 0.46 ↓ 74.37 1.54 ↓
pre-correction + LRA-diffusion w/o LRA 95.11 0.92 ↓ 71.63 2.74 ↓
LRA-diffusion 93.68 1.73 ↓ 67.67 4.96 ↓

Table F.2. Classification accuracy (%) on CIFAR-10 and CIFAR-100 datasets with 40% IDN, using multiple combinations of different
methods with different pre-trained feature extractors

Method Pre-trained fext CIFAR-10 CIFAR-100

DISC - 85.61 64.46

CARD ResNet34 71.77 56.51
LRA-diffusion ResNet34 86.73 65.55

DLD (Ours) ResNet34 87.17 66.59

CARD SimCLR 75.93 59.02
LRA-diffusion SimCLR 87.13 66.34

DLD (Ours) SimCLR 89.73 68.57

CARD ViT-L/14 76.97 61.26
LRA-diffusion ViT-L/14 93.68 67.67

DLD (Ours) ViT-L/14 96.49 76.03

(10%∼20% IDN), the performance of DLD-knn is supe-
rior to other combinations. However, as the noise ra-
tio increases, DLD-cos exhibits more stable performance.
One possible explanation is that cosine similarity, based
on directional similarity, is more resistant to noise inter-
ference than traditional Euclidean distance. In medium
to high noise environments (30% and above noise level),
both DLD-vector, which combines one strategy, and DLD-
ws, which combines two strategies, progressively improve
model performance. This indicates that the training strategy
of vector labels retains more secondary information from
the neighborhood label distribution, while the fusion fea-
ture method provides the model with more diverse knowl-
edge. Both of these training strategies incorporate the
idea of implicit regularization, achieving improved model
generalization by enriching learning information. How-
ever, in low-noise environments, the interference of redun-
dant information during DLD-vector and DLD-ws training
slightly affects model classification performance. Never-
theless, these four training settings show significant perfor-
mance improvements compared to LRA-diffusion, further
demonstrating the necessity and effectiveness of each com-

ponent of our method. Considering that DLD-ws demon-
strates superior performance stability in all experiments, we
typically recommend using this training configuration.

G. Detailed Experimental Results on Cloth-
ing1M

As shown in Table F.3, on Clothing1M, the performance of
DLD combined with ViT-L/14 is slightly lower than that
of the combination model of LRA-diffusion and CC. This
combination model employs the CC framework for two-
stage label filtering on the dataset and extracts a feature
space robust to noise, incurring training costs higher than
the overhead of the diffusion model itself, consequently
yielding a slight improvement in classification performance.
Although integrating CC in the same manner into DLD also
enhances the model’s performance, we argue that this con-
tradicts the original design principle of DLD, which prior-
itizes efficiency. Such trade-offs are deemed unreasonable
for large-scale training tasks.

LRA-diffusion DLD-knn DLD-cos DLD-vector DLD-ws
Configurations

10
20

30
40

50
60

70
80

No
ise

 L
ev

el
s (

%
)

76.04 80.02 78.12 78.11 78.76

72.31 78.27 77.91 77.94 78.62

70.10 75.71 77.44 77.40 77.51

66.68 72.17 74.74 74.92 76.03

62.92 67.72 72.37 72.50 73.89

56.82 61.60 68.46 68.53 69.57

49.76 55.40 63.19 63.39 64.12

43.99 44.87 50.35 50.45 56.71
45

50

55

60

65

70

75

80

Te
st

 A
cc

ur
ac

y
(%

)

Figure F.1. Test accuracy (%) of LRA-diffusion and different combinations of DLD training strategies on the CIFAR-100 dataset with
varying levels of IDN.

Table F.3. Classification accuracies (%) on Clothing1M

CE Co-teaching DMI PLC LongReMix C2D NCR DivideMix

68.94 69.21 72.46 74.02 74.38 74.58 74.60 74.76

CC DISC LRA-diffusion SANM DLD LRA-diffusion+CC DLD+CC

75.40 74.79 74.46 75.63 75.69 75.70 75.79

H. Limitations and future work

In this paper, although we experimentally demonstrate that
DLD performs excellently across most real-world datasets.
the model has not yet been tested in more complex noise
environments, such as imbalanced [7] or OOD noise [8]. In
addition, part of the overall performance advantage of DLD
can be attributed to the pre-correction method. In future
work, we aim to integrate the discriminative and generative
paradigms, allowing the generative information from the
diffusion model to guide the pre-correction stage in reverse,
or using another diffusion model to generate the label infor-
mation. We also will extend this work to regression tasks
or multi-label classification tasks, addressing issues such as

numerical label noise and the complexities of multi-label
noise. Additionally, this work does not provide a detailed
analysis of the independence between diffusion coefficients
and diffusion paths. In future research, we will further in-
vestigate the impact of the variation patterns of diffusion
coefficients on model performance.

References
[1] Jian Chen, Ruiyi Zhang, Tong Yu, Rohan Sharma, Zhiqiang

Xu, Tong Sun, and Changyou Chen. Label-retrieval-
augmented diffusion models for learning from noisy labels.
Advances in Neural Information Processing Systems, 36,
2024. 7

[2] Pengfei Chen, Junjie Ye, Guangyong Chen, Jingwei Zhao,

and Pheng-Ann Heng. Beyond class-conditional assumption:
A primary attempt to combat instance-dependent label noise.
In Proceedings of the AAAI Conference on Artificial Intelli-
gence, pages 11442–11450, 2021. 4

[3] Ekin D Cubuk, Barret Zoph, Jonathon Shlens, and Quoc V
Le. Randaugment: Practical automated data augmen-
tation with a reduced search space. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition workshops, pages 702–703, 2020. 9

[4] Bo Han, Quanming Yao, Xingrui Yu, Gang Niu, Miao
Xu, Weihua Hu, Ivor Tsang, and Masashi Sugiyama. Co-
teaching: Robust training of deep neural networks with ex-
tremely noisy labels. Advances in neural information pro-
cessing systems, 31, 2018. 7

[5] Xizewen Han, Huangjie Zheng, and Mingyuan Zhou. Card:
Classification and regression diffusion models. Advances in
Neural Information Processing Systems, 35:18100–18115,
2022. 7

[6] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising dif-
fusion probabilistic models. Advances in neural information
processing systems, 33:6840–6851, 2020. 1, 3

[7] Yingsong Huang, Bing Bai, Shengwei Zhao, Kun Bai, and
Fei Wang. Uncertainty-aware learning against label noise on
imbalanced datasets. In Proceedings of the AAAI Conference
on Artificial Intelligence, pages 6960–6969, 2022. 12

[8] Galadrielle Humblot-Renaux, Sergio Escalera, and
Thomas B Moeslund. A noisy elephant in the room:
Is your out-of-distribution detector robust to label noise?
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 22626–22636, 2024.
12

[9] Jongwoo Ko, Sumyeong Ahn, and Se-Young Yun. Efficient
utilization of pre-trained model for learning with noisy la-
bels. In ICLR 2023 Workshop on Pitfalls of limited data and
computation for Trustworthy ML, 2023. 7

[10] Junnan Li, Richard Socher, and Steven CH Hoi. Dividemix:
Learning with noisy labels as semi-supervised learning.
arXiv preprint arXiv:2002.07394, 2020. 5, 7

[11] Jiawei Liu, Qiang Wang, Huijie Fan, Yinong Wang, Yan-
dong Tang, and Liangqiong Qu. Residual denoising diffu-
sion models. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 2773–
2783, 2024. 8

[12] Sheng Liu, Jonathan Niles-Weed, Narges Razavian, and Car-
los Fernandez-Granda. Early-learning regularization pre-
vents memorization of noisy labels. Advances in neural in-
formation processing systems, 33:20331–20342, 2020. 7

[13] Shakir Mohamed and Balaji Lakshminarayanan. Learn-
ing in implicit generative models. arXiv preprint
arXiv:1610.03483, 2016. 4

[14] Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan,
and Surya Ganguli. Deep unsupervised learning using
nonequilibrium thermodynamics. In International confer-
ence on machine learning, pages 2256–2265. PMLR, 2015.
2

[15] Kihyuk Sohn, David Berthelot, Nicholas Carlini, Zizhao
Zhang, Han Zhang, Colin A Raffel, Ekin Dogus Cubuk,

Alexey Kurakin, and Chun-Liang Li. Fixmatch: Simplifying
semi-supervised learning with consistency and confidence.
Advances in neural information processing systems, 33:596–
608, 2020. 9

[16] Jiaming Song, Chenlin Meng, and Stefano Ermon.
Denoising diffusion implicit models. arXiv preprint
arXiv:2010.02502, 2020. 4

[17] Laurens Van der Maaten and Geoffrey Hinton. Visualizing
data using t-sne. Journal of machine learning research, 9
(11), 2008. 6, 8

[18] Yilun Xu, Peng Cao, Yuqing Kong, and Yizhou Wang.
L dmi: A novel information-theoretic loss function for train-
ing deep nets robust to label noise. Advances in neural infor-
mation processing systems, 32, 2019. 7

[19] Sergey Zagoruyko and Nikos Komodakis. Wide residual net-
works. arXiv preprint arXiv:1605.07146, 2016. 4

[20] Zhilu Zhang and Mert Sabuncu. Generalized cross entropy
loss for training deep neural networks with noisy labels. Ad-
vances in neural information processing systems, 31, 2018.
7

	Conditional Label Diffusion Models and Feature Introduction Analyzing
	Unconditional directional diffusion model
	Conditional directional diffusion model
	Deterministic Implicit Inference
	Experimental Setup and Details
	Generation of Instance-dependent Noise
	Experimental Results on CIFAR with Class-conditional Noise
	Training Efficiency Analysis
	Real-world Dataset Details
	Implementation Details

	More Details of Ablation Studies
	Cross ablation experiments
	Contribution of Pre-trained Features
	Other Hyperparameter Analysis

	Detailed Experimental Results on Clothing1M
	Limitations and future work

