
PosterO: Structuring Layout Trees to Enable Language Models
in Generalized Content-Aware Layout Generation

Supplementary Material

This supplementary material provides additional infor-
mation about the proposed approach, PosterO, and the new
dataset, PStylish7. Sec. A presents examples of layout trees
T and prompts P , Sec. B reports additional experimental re-
sults, and Sec. C provides more details and statistics about
the PStylish7 dataset.

A. Examples of Layout Trees and Prompts

Layout trees T . Fig. A presents examples of layout trees
structured as depicted in Sec. 3.1. In (a), two distinct areas
a⃝ are detected for its design intent, and the double-nested

underlay elements (i.e., 1⃝- 5⃝) contribute to a layout tree
depth of three, based on the proposed hierarchical node rep-
resentation. In (b), the curved texts (i.e., 2⃝, 3⃝) are outlined
using <path>, following universal element vectorization.

<svg width="513" height="513" xmlns="http://www.w3.org/2000/svg">
<polygon id="available_area" points="60,19 465,19 465,297 60,297" />
<rect id="canvas_0" x="0" y="0" width="513" height="513" />
<rect id="embellishment_1" x="152" y="237" width="205" height="20" />
<path id="text-curved_2" d="M 130 159 C 156 146 198 127 253 124

 C 300 121 342 139 386 158" />
<path id="text-curved_3" d="M 112 228 C 148 203 183 169 254 172

 C 313 174 361 201 404 229" />
</svg>

Layout tree of (a)
<svg width="513" height="750" xmlns="http://www.w3.org/2000/svg">
 <polygon id="available_area" points="47,491 492,491 492,714 47,714" />

<polygon id="available_area" points="215,22 470,22 470,171 215,171" />
<rect id="canvas_0" x="0" y="0" width="513" height="750" />
<svg x="47" y="456">

<rect id="underlay_1" x="0" y="0" width="427" height="248" />
<rect id="text_2" x="142" y="193" width="159" height="39" />
<rect id="text_3" x="57" y="77" width="304" height="80" />
<svg x="74" y="22">

<rect id="underlay_4" x="0" y="0" width="270" height="43" />
<rect id="text_5" x="66" y="8" width="136" height="27" />

</svg>
</svg>
<rect id="logo_6" x="106" y="0" width="303" height="79" />

</svg>

Layout tree of (b)

Design intent

Logo

Underlay

Text
Embellishment

(a) (b)
a

a

1

2
3

4

6

1
a

3
2

a
a

1
2
3

4
5

5

6

a

1
2

3

Figure A. Examples of layout trees T from (a) PKU PosterLayout
and (b) PStylish7 datasets.

Prompts P . Fig. B presents examples of prompts created
as depicted in Sec. 3.2. The canvases’ varying sizes demon-
strate PosterO’s adaptability to diverse aspect ratios.

<svg width="513" height="750" xmlns="http://www.w3.org/2000/svg">
<polygon id="available_area" points="71,541 437,541 437,705 71,705" />
<polygon id="available_area" points="55,40 438,40 438,224 55,224" />
<rect id="canvas_0" x="0" y="0" width="513" height="750" />
<rect id="text_1" x="23" y="109" width="468" height="54" />
<rect id="text_2" x="27" y="41" width="459" height="60" />
<rect id="text_3" x="59" y="573" width="397" height="47" />

</svg>

<svg width="513" height="750" xmlns="http://www.w3.org/2000/svg">
<polygon id="available_area" points="45,504 441,504 441,716 45,716" />
<polygon id="available_area" points="66,45 443,45 443,195 66,195" />
<rect id="canvas_0" x="0" y="0" width="513" height="750" />
<svg x="179" y="638">

<rect id="underlay_1" x="0" y="0" width="157" height="51" />
<rect id="text_2" x="25" y="13" width="105" height="28" />

</svg>
<rect id="logo_3" x="30" y="18" width="146" height="38" />
<rect id="text_4" x="75" y="110" width="365" height="38" />
<rect id="text_5" x="80" y="502" width="379" height="68" />

</svg>

Example 1: This svg uses canvas_0 of size (513, 750) with available areas (71, 541, 437, 705),
 (55, 40, 438, 224) to allocate { text_1, text_2, text_3 }.

Final: This svg uses canvas_0 of size (513, 750) with available areas (69, 502, 411, 703),
 (59, 35, 474, 210) to allocate { underlay_1, text_2, logo_3, text_4, text_5 }.

Prompt (a)
Preface

E
xa
m
p
le
s

Example 0: This svg uses canvas_0 of size (513, 750) with available areas (45, 504, 441, 716),
 (66, 45, 443, 195) to allocate{ underlay_1, text_2, logo_3, text_4, text_5 }.

The following are some scalable vector graphics (svg) allocating elements on the canvas.

...

P
o
st
cr
ip
t

First, learn from the examples and understand how this template works.
Then, create a new one while following the rules:
1. The svg must be meaningful, which implies that empty, all-zero, or symbolic attributes are
 not allowed.
2. <rect> is the only legal svg tag, and the inner <rect> must be within the outer <svg>.
3. The id of <rect> must be unique and picked from {}.
4. The position of <rect> should be clustered neatly in avaliable areas while avoiding

intersection. If intersected, <rect> should be resized or moved.

3. The id of each tag must be unique and picked from {}.
4. The position of each tag should be clustered neatly in avaliable areas while avoiding

intersection. If intersected, the tags should be resized or moved.

First, learn from the examples and understand how this template works.
Then, create a new one while following the rules:
1. The svg must be meaningful, which implies that empty, all-zero, or symbolic attributes are
 not allowed.
2. <rect>, <ellipse>, <path> are the only legal svg tag, and the inner <rect> must be within

<svg width="513" height="513" xmlns="http://www.w3.org/2000/svg">
 <polygon id="available_area" points="33,0 478,0 478,171 33,171" />
 <rect id="canvas_0" x="0" y="0" width="513" height="513" />
 <rect id="embellishment_1" x="43" y="158" width="28" height="25" />
 <rect id="embellishment_2" x="447" y="158" width="27" height="28" />
 <path id="text-curved_3" d="M 85 164 C 112 148 152 124 189 122 C 306 117 367 191

<svg width="513" height="641" xmlns="http://www.w3.org/2000/svg">
 <polygon id="available_area" points="33,20 455,20 455,281 33,281" />
 <rect id="canvas_0" x="0" y="0" width="513" height="641" />
 <path id="text-curved_1" d="M 57 139 C 86 124 131 113 167 112 C 240 109 261 145

Example 1: This svg uses canvas_0 of size (513, 513) with available areas (33, 0, 478, 171)
 to allocate { embellishment_1, embellishment_2, text-curved_3 }.

Final: This svg uses canvas_0 of size (513, 513) with available areas (71, 19, 415, 456)
 to allocate { text-curved_1 }.

Prompt (b)
Preface

E
xa
m
p
le
s

Example 0: This svg uses canvas_0 of size (513, 641) with available areas (33, 20, 455, 281)
 to allocate { text-curved_1 }.

The following are some scalable vector graphics (svg) allocating elements on the canvas.

...

P
o
st
cr
ip
t

the outer <svg>.

366 176 C 396 185 441 182 465 180" />
</svg>

436 181" />
</svg>

Figure B. Examples of prompts P on (a) PKU PosterLayout and
(b) PStylish7 datasets.

(a)

(b)

(c)

#6#5#4#3#2#1Test image

Figure C. Intent-aligned example selection results (#*) on the unannotated test split of PKU PosterLayout dataset.

B. Additional Experimental Results
Selected in-context examples. Fig. C shows the k layout
trees {Tj}kj selected as in-context examples that align with
the intents of the given test images. By observing (a), we
see that the design intent latent space ZD effectively mod-
els both semantics and spatial distribution of objects within
the images. While the composition of the test images ap-
pears similar in (b) and (c), the selection results are very
different. These findings demonstrate that our selection pro-
cedure provides a comprehensive understanding of visual
contents and is sensitive to subtle differences.

More visualized results. Fig. D and Fig. E visualize the
layouts generated by all baselines [4, 17, 19, 21, 31, 44, 55]
and the proposed PosterO. Elements violating graphic met-
rics and content metrics are respectively indicated by blue
and yellow arrows. The comparisons with ground truth
demonstrate that PosterO most accurately predicts the de-
sign intents and actively utilizes the available areas. Be-
sides, it understands the graphic relationship in layouts well
and generates non-overlapping, aligned elements.

More ablation studies on vision processing. As reported
in Tab. A, we investigate more configurations as follows.

(1) Visual condition vectorization: To demonstrate the
advantages of design intent over the widely utilized salient
regions, the variant ‘Saliency’ as in LayoutPrompter [31] is
implemented. It is observed that all content metrics severely
drop, surprisingly, even worse than not performing any vi-

Undl ↑ Unds ↑ Int↓ Sal↓ Rea↓ Avg↓
Ours 0.9856 0.9241 0.1427 0.2131 0.0248 0.0677

Visual condition vectorization (Ours: Design intent)
Saliency 0.9694 0.9114 1.2470 1.1867 0.0374 0.3702

Visual information perception (Ours: d+f)
-d-f 0.6873 0.5776 1.1941 0.4980 0.0275 0.3512
+v 0.8784 0.6092 0.4868 0.4145 0.0270 0.2063
+v-d 0.8874 0.7429 0.3142 0.2078 0.0239 0.1311
+v-d-f 0.8335 0.6399 0.6432 0.6116 0.0302 0.2591

Table A. More ablation studies on visual condition vectorization
and visual information perception. (d: Design intent vectorization,
f : Intent-aligned example selection, v: LLaMA-3-LLaVA-NeXT.)

sual perception (-d-f). This underscores that design intent is
an encouraging substitute for the current saliency paradigm.

(2) Visual information perception: To demonstrate our
(d, Sec. 3.1) vectorized conditions and (f, Sec. 3.2) learning
examples have already considered input images very well,
three variants are implemented with (v) LLaMA-3-LLaVA-
NeXT§. It is a large multimodal model (LMM) with pow-
erful visual reasoning capabilities based on Llama 3-8B.
However, v only marginally improves Sal↓ and Rea↓ when
it replaces d, and the rest variants obtain poor results. As
our detection model (16M) is much smaller than LLaVA-
NeXT’s vision head (encoder: 304M, connector: 20M), d is
a proper alternative. In addition, using d avoids cross-modal
differences between visual tokens and geometric layout el-
ements, reflecting on its better graphic performance.

§https://huggingface.co/llava-hf/llama3-llava-next-8b-hf

Test image Ground Truth CGL-GAN DS-GAN ICVT LayoutDM RALF PosterLlama LayoutPrompter PosterO

Graphic-aspect flaw Content-aspect flaw

Figure D. Visualized results on the annotated test split of PKU PosterLayout dataset.

Test image Ground Truth CGL-GAN DS-GAN ICVT LayoutDM RALF PosterLlama LayoutPrompter PosterO

Figure E. Visualized results on the annotated test split of CGL dataset.

(b) without h

⬆ Empty underlay!

(a) with h

-1
-0.0514
-0.0152

Figure F. Impact of removing
h: hierarchical nodes in Tab. 5.

⟹ MockupGenerated layout + Materials + Style1 + Style2

"ancient" "ancient, colored"

"elegant" "elegant, yellow"

text_2: 安全⼀起⾏, text_3: ⽂明从"头"开始

text_2: 購⼊する, logo_3: link to https://hairrecipe.hk/dist/images/logo.png...

Logo Underlay Text

(a)

(b)

Figure G. Results of poster design realization.

OursL2 Paint Poem Metro Movie Menu Animal Insta.

Ove ↓ 0.0094 0.0068 0.2622 0.0094 0.0063 0.0085 0.0004
Int ↓ 0.4159 0.2402 0.6382 0.7213 0.1260 0.3516 0.1408
Sal ↓ 3.1897 0.6106 0.5532 0.5806 0.4312 1.6667 0.0590

Avg ↓ 1.2050 0.2859 0.4845 0.4371 0.1879 0.6756 0.0668

Table B. More quantitative results on PStylish7 dataset.

‘Negative’ impact of hierarchical nodes. As the enclos-
ing structure is equivalent to nested layouts, the current de-
sign of (h, Sec. 3.1.3) hierarchical node representation has
effectively constrained the solution space. However, by ob-
serving the first two rows of Tab. 5, removing h appears to
improve the standardized content metrics, Int ↓ and Sal ↓.
To determine the primary cause, we analyzed the visual-
ization results and found a significant occurrence of empty
underlays, as depicted in Fig. F. These invalids improve in
Cov and Uti, thereby deceptively enhancing the standard-
ized metrics. This finding again highlights the importance
of h in generating layouts with satisfactory integrity.

Results of poster design realization. Sec. 3.3 introduces
the zero-shot transformation from generated layouts to ac-
tual posters. Fig. G shows the results of each step and the
final designs. During mockup creation, not only the font
size and text color are properly predicted, but also the link
to the logo image, i.e., href attribute, is correctly created
with an initial unknown value. For material synthesis, all
given contents are perfectly placed into the elements of cor-
responding id. We also request LLMs with style in simple
words, such as elegant, and the resultant posters are aston-
ishingly appealing.

PosterOL2 on PStylish7. In the main text, Tab. 8 reported
the quantitative results of PosterOCL and PosterOL3 on
PStylish7. Here, Tab. B reports those of PosterOL2. Sur-
prisingly, it achieves the best overall performance on Metro,
Menu, Animal, and especially Instagram. By accumulating

(a) Menu (b) Animal (c) Instagram

Figure H. Visualized results of PosterOL2 on PStylish7 dataset.

Avg ↓ across seven categories, PosterOL2, CL, and L3 ob-
tain 3.3427, 4.3799, and 4.2877, respectively. We visualize
some amazing layouts generated by PosterOL2 in Fig. H.

C. PStylish7: More Details and Statistics

PStylish7 is the first dataset for generalized content-aware
layout generation. We built it with 152 image-layout pairs
for few-shot learning and 100 image canvases for bench-
mark testing. The data comes from a variety of sources, in-
cluding Canva, Pixabay, Ucshe, and the New York Heritage
Digital Collections. In the remaining section, statistics on
the distribution of sample categories, element types, and im-
age aspect ratios within the PStylish7 dataset are provided
to offer a clear understanding of its diversity and complex-
ity. Additionally, a detailed explanation of the metrics cal-
culation is presented.

C.1. Statistics
Sample categories. The seven categories in PStylish7 are
artwork exhibition (Paint), cultural education (Poem), pub-
lic safety (Metro), entertainment marketing (Movie), mer-
chandising display (Menu), public advocacy (Animal), and
social-media interaction (Instagram). The distributions of

data: [
{ value: 152, name: 'Training set' },
// { value: 100, name: 'Test' },

],
label: {

fontSize: 42,
position: 'inner',
fontFamily: 'Times',
formatter: '{name|{b}}\n{time|{c}}\n\n',
minMargin: 5,
edgeDistance: 10,
lineHeight: 50,
rich: {

time: {
fontSize: 32,
fontFamily: 'Times',
color: '#999'

}
}

},
itemStyle: {

color: '#eee',
},

},
{

name: 'Access From',
type: 'pie',
radius: ['40%', '70%'],
avoidLabelOverlap: false,
padAngle: 5,
width: 860,
itemStyle: {

borderRadius: 10
},
// label: {
// show: false,
// position: 'center'
// },
// emphasis: {
// label: {
// show: true,
// fontSize: 40,
// fontWeight: 'bold'
// }
// },
label: {

fontSize: 42,

Edit Code Full Code Option Preview

28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74

JS TS Run

Train split
152

PaintPaint
 13

PoemPoem
 39

MetroMetro
 12

MovieMovie
27

MenuMenu
23

AnimalAnimal
17

InstagramInstagram
21

Render Dark Mode Decal Pattern 5.5.1

Nightly

 Download Screenshot Share 19:35:44 Chart has been generated in 6.00ms

Home Docs Download Examples Resources Community ASF 中⽂

type: pie ,
selectedMode: 'single',
radius: [0, '35%'],
width: 860,
labelLine: {

show: false
},
data: [

// { value: 152, name: 'Training set' }
{ value: 100, name: 'Test set' },

],
label: {

fontSize: 42,
position: 'inner',
fontFamily: 'Times',
formatter: '{name|{b}}\n{time|{c}}\n\n',
minMargin: 5,
edgeDistance: 10,
lineHeight: 50,
rich: {

time: {
fontSize: 32,
fontFamily: 'Times',
color: '#999'

}
}

},
itemStyle: {

color: '#eee'
}

},
{

name: 'Access From',
type: 'pie',
radius: ['40%', '70%'],
avoidLabelOverlap: false,
padAngle: 5,
width: 860,
itemStyle: {

borderRadius: 10
},
// label: {
// show: false,
// position: 'center'
// },
// emphasis: {
// label: {

Edit Code Full Code Option Preview

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67

JS TS Run

Test split
100

PaintPaint
 13

PoemPoem
 18

MetroMetro
 10

MovieMovie
21

MenuMenu
15

AnimalAnimal
11

InstagramInstagram
12

Render Dark Mode Decal Pattern 5.5.1

Nightly

 Download Screenshot Share 19:47:04 Chart has been generated in 7.40ms

Home Docs Download Examples Resources Community ASF 中⽂

// position: center
// },
// emphasis: {
// label: {
// show: true,
// fontSize: 40,
// fontWeight: 'bold'
// }
// },
label: {

fontSize: 42,
fontFamily: 'Times',
alignTo: 'edge',

formatter: '{name|{b}}\n{time|{c}} ',
minMargin: 5,
edgeDistance: 10,
lineHeight: 50,
rich: {

time: {
fontSize: 30,
fontFamily: 'Times',
color: '#999'

}
}

},
labelLayout: function (params) {

const isLeft = params.labelRect.x < myChart.getWidth() / 2;
const points = params.labelLinePoints;
// Update the end point.
points[2][0] = isLeft

? params.labelRect.x
: params.labelRect.x + params.labelRect.width;

return {
labelLinePoints: points

};
},
labelLine: {

length: 15,
length2: 0,
maxSurfaceAngle: 80

},
data: [

{ value: 82, name: 'L' },
{ value: 38, name: 'U' },
{ value: 30, name: 'E' },
{ value: 423, name: 'T-G' },

Edit Code Full Code Option Preview

66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112

JS TS Run

Element
883

T-GT-G
 423

T-VT-V
173

T-RT-R
69

T-ST-S
42

T-CT-C
26

LL
 82

UU
 38

EE
 30

Render Dark Mode Decal Pattern 5.5.1

Nightly

 Download Screenshot Share 20:11:49 Chart has been generated in 7.10ms

1 of 1

avoidLabelOverlap: false, All

+ .* Aa \b S

Home Docs Download Examples Resources Community ASF 中⽂

(a) Distribution of poster categories (b) Distribution of canvas categories (c) Distribution of layout element types

Figure I. Statistics on sample categories and layout element types in PStylish7 dataset.

(a) Intent
(b) Saliency

Paint Poem Metro Movie Menu Animal Instagram

= 0.215 = 0.269 = 0.454 = 0.567 = 0.511 = 0.367 = 0.370

= 0.142 = 0.251 = 0.510 = 0.963 = 0.474 = 0.195 = 0.764

Figure J. Varied difficulty degrees of PStylish7 categories.

samples across different categories in the train and test splits
are illustrated in Fig. I(a) and (b).

Inter-category gaps. With the diverse purposes and en-
tities in different categories, their difficulty degrees H are
also noticeably varying. To gain insight into H , we ana-
lyzed each category by visualizing the distribution variation
∆D between their train/test splits and indicating the trade-
off factors R = UnmatchL

MatchL
for content metrics, as shown in

Fig. J. As observed, H∝ ∆D
R , aligning with PosterO’s per-

formance reported in Tab. 8 and Tab. B.

Layout element types. The eight layout element types
within PStylish7 are logo (L), underlay (U), embellishment
(E), and text (T-G, general), along with four text variants (T-
V, vertical; T-R, rotated; T-S, ellipse; T-C, complex curve),
which are exclusive to this new dataset. The distribution
of elements across different types is illustrated in Fig. I(c),
showing a total of 883 elements. Notably, over one-third of
them are specialized variants, highlighting the dataset’s em-
phasis on capturing the complexity inherent in real-world
design work.

Image aspect ratios. The distribution of image aspect ra-
tios within PStylish7 is illustrated in Fig. K. Unlike exist-
ing domain-specific datasets [19, 55], where samples are
predominantly of a fixed aspect ratio (i.e., 0.68), PStylish7
includes a variety of aspect ratios, with the most common
being 5:7 (i.e., 0.71), 9:16 (i.e., 0.56), and 1:1. This high-
lights the dataset’s emphasis on providing a more realistic
conditions for layout generation tasks.

axisLabel: {
fontFamily: 'Times'

}
}

],
yAxis: [

{
type: 'category',
data: Object.keys(builderJson.charts),
axisLabel: {

interval: 0,
rotate: 15,
fontFamily: 'Times'

},
splitLine: {

show: false
}

}
],
series: [

{
type: 'bar',
stack: 'chart',
z: 3,
label: {

fontFamily: 'Times',
position: 'right',
show: true

},
data: Object.keys(builderJson.charts).map(function (key) {

return builderJson.charts[key];
})

},
{

type: 'bar',
stack: 'chart',
silent: true,
itemStyle: {

color: '#eee'
},
data: Object.keys(builderJson.charts).map(function (key) {

return builderJson.all - builderJson.charts[key];
})

}
]

};

Edit Code Full Code Option Preview

60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106

JS TS Run

0.50
0.56
0.57
0.60
0.61
0.62
0.63
0.64
0.65
0.67
0.69
0.70
0.71
0.73
0.74
0.75
0.76
0.77
0.78
0.79
0.80
0.84
0.85
1.00
1.10
1.19
1.20
1.33
1.43
1.50
1.78
2.17
2.23
2.27
3.25

0 20 40 60 80

11
5050

1313
11
22
44

77
11
11

55
22
22

7979
11
11

1111
99

77
22
22
22
11
11

3434
11
11
11
11
11
22
22
11
11
11
11

Render Dark Mode Decal Pattern 5.5.1

Nightly

 Download Screenshot Share 00:35:23 Chart has been generated in 7.40ms

Home Docs Download Examples Resources Community ASF 中⽂

Figure K. Distribution of image aspect ratios in PStylish7 dataset.

C.2. Metrics
Given the high flexibility of the specialized elements, cur-
rent numerical metrics (e.g., Ali ↓) often fail to evaluate
their placement and organization. To this end, we resort to
pixel-level metrics and regularize the rendering process of
element maps for computation. While the content metrics
(i.e., (Cov ↑, Con ↓), standardized as Int ↓, and (Uti ↑,
Occ ↓), standardized as Sal ↓) are inherently based on ele-
ment maps, the graphic ones are not. Therefore, we intro-
duce a pixel-level overlay Ove↓ to fill in this vacancy.

Element map rendering process. An element map mei ∈
{0, 1}h×w serves as the visual indicator revealing the spa-
tial coverage of layout elements {ei}ni . Fig. L illustrates
the corresponding element maps of layouts in Fig. H. While
rectangular elements are straightforwardly filled with white,
those approximated by ellipses and curves require a differ-
ent way. Concretely, we utilize strokes with a width of 30
pixels to outline these elements. Every element map is uni-

(a) (b) (c)

Figure L. Rendered element maps of layouts in Fig. H.

formly scaled to a width h of 513 pixels to maintain consis-
tency in scale for appropriate comparisons. With our SVG
language-based representations, the rendering can be easily
implemented by introducing CSS-style declarations as:

rect { fill: white; }
ellipse { stroke: white; stroke-width: 30; }
path { stroke: white; stroke-width: 30; }

Pixel-level overlay Ove ↓. To calculate overlay between
non-underlay elements {ej}mj , each element ej is rendered
individually as a layer ℓj of the element map. The overlay
is then determined by calculating the sum of layers {ℓj}mj
and subtracting the map mej that results from their combi-
nation. Specifically, as the maximum value of each pixel
in the map is 1, this pixel-level operation accumulates the
number of pixels where more than one element is present.
By dividing the size of the map mej , we obtain a normal-
ized measure of overlay.

	Introduction
	Related Work
	Content-aware Layout Generation
	Language Model-based Layout Generation

	The Proposed Approach: PosterO
	Layout Tree Construction
	Universal Shape Vectorization
	Design Intent Vectorization
	Hierarchical Node Representation

	Layout Tree Generation
	Intent-aligned Example Selection
	In-context Learning for Layout Generation

	Poster Design Realization
	Experiments
	Datasets
	Evaluation Metrics
	Implementation Details
	Comparison with State-of-the-arts
	Ablation Study
	Generalized Content-aware Layout Generation

	Conclusion and Discussion

	Examples of Layout Trees and Prompts
	Additional Experimental Results
	PStylish7: More Details and Statistics
	Statistics
	Metrics

