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1. More Implementation Details
1.1. Entropy Model

Here, we provide a detailed introduction to our implicit en-
tropy model. This model estimates entropy by learning a
cumulative distribution function (CDF) that represents the
probability distribution of the input data. The model com-
prises multiple layers, each parameterized by weight matri-
ces, biases, and scaling factors. These parameters transform
the input tensor through a series of operations, such as ma-
trix multiplication and bias addition, combined with non-
linear activations like softplus. Each layer progressively re-
fines the input values to approximate a CDF, capturing the
cumulative probability distribution of the data.

To maintain precision, we avoid assuming any prede-
fined distribution for the data. Instead, we construct a novel
distribution within the entropy model to closely approxi-
mate the actual data distribution. Specifically, the entropy
model computes cumulative logits for values just below and
above the actual data point. This approach enables the
model to capture the probability interval that contains the
data point, thereby improving estimation accuracy. The
likelihood, which represents the probability of the input
within this interval, is calculated as the difference between
the sigmoid activations of these cumulative logits. This
likelihood is then incorporated into the overall loss function
during training.

When the training process is complete, we apply quanti-
zation and a range coder for entropy coding to further com-
press the data volume and generate the bitstream. The en-
tropy model itself occupies about 100 KB per frame, which
is relatively large compared to the compressed motion grid
Mt and the compensated Gaussians ∆Gt. Therefore, we
analyze the actual distribution of the data prior ωt before
entropy coding and transmit ωt instead of the entire en-
tropy model. This approach further reduces the size of each
frame.

The process of entropy encoding can be represented as
follows:

Q(x) = ⌊q · x+ 0.5⌋ ,
Bt = E (Q (x)−Q (min(x)) ;ωt) .

(1)

Here, x represents the data to be compressed, which in-
cludes Mt and ∆Gt. The bitstream after entropy encoding,
denoted as Bt, consists of BM

t and B∆G
t , corresponding

to Mt and ∆Gt, respectively. The range encoder is repre-
sented by E.

Table 1. The average size of each component of inter-frames on
the N3DV dataset.

BM
t B∆G

t ωM
t ω∆G

t Total
Size (KB) 164.72 65.88 0.25 0.17 231.02

To enable compression into the int8 format, we convert
the compressed data into non-negative values and subse-
quently restore it to its original range during decompression.
The variable q denotes the quantization parameter. During
quantization, the data is multiplied by q, which effectively
expands its range and subtly enhances the precision of the
quantization process. On the decoding side, the entropy de-
coding process can be expressed as follows:

x̂ =
D (Bt;ωt) +Q (min(x))

q
, (2)

where D is the range decoder. Therefore, for each inter-
frame, the data to be transmitted includes the bitstream BM

t

and B∆G
t , and the data distributions ωt = {ωM

t , ω∆G
t }.

The size of each of these components is detailed in Tab. 1.

1.2. Hyperparameters Settings

In this section, we provide a more detailed explanation of
the hyperparameter settings for the two aspects.

Model Parameter Settings: We use two shared global
lightweight MLPs Φµ and ΦR, both with an input dimen-
sion of 20, a hidden layer size of 64, and output dimensions
of 3 and 4, respectively. For the multi-resolution motion
grid Mt, we use feature grid channels of 4, 4, and 2, with
dimensions 323, 643, and 1283.

Gaussian Compensation Parameter Settings: For
Gaussian compensation, we choose τg = 0.0001, τµ =
0.08, and τR = π

4 . We only apply the second type of Gaus-
sian compensation to the Gaussians whose scale s > −0.01.
(The actual scale is activated using the exponential func-
tion.) To prevent an excessive increase in the number of
Gaussians, we filter out Gaussians with opacity α < 0.01
after stage 2.

2. More Results
2.1. Quantitative Results

We provide a quantitative comparison of image quality,
measured by PSNR, and model size across all scenes in the
N3DV dataset in Tab. 2. To further demonstrate the vari-
able bitrate characteristic and superior RD performance of
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Figure 1. More Qualitative comparison on more sequences of the N3DV dataset against ReRF, TeTriRF, and 3DGStream.
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Figure 2. More Rate-distortion curves across different sequences of N3DV datasets.

our method, we present additional RD curves for more se-
quences in Fig. 2.

2.2. Qualitative Results

We have prepared more qualitative comparison results in
the Fig. 1. We also prepared videos to show the free view
synthesis results on various scenes from the N3DV dataset



Table 2. Quantitative comparison of average PSNR values(dB) and model size(MB) across all sequences in the N3DV dataset.

Method
Coffee
Martini

Cook
Spinach

Cut
Beef

Flame
Salmon

Flame
Steak

Sear
Steak Mean

StreamRF 27.77/9.34 31.54/7.48 31.74/7.17 28.19/7.93 32.18/7.02 32.29/6.88 30.61/7.64
ReRF 26.24/0.79 31.23/0.84 31.82/0.81 26.80/0.78 32.08/0.91 30.03/0.51 29.71/0.77

TeTriRF 27.10/0.73 31.97/0.69 32.45/0.85 27.61/0.82 32.74/0.87 32.03/0.60 30.65/0.76
3DGStream 27.96/8.00 32.88/8.05 32.99/8.19 28.52/8.07 33.41/8.19 33.58/8.16 31.54/8.11

Ours 27.98/0.58 32.81/0.44 33.03/0.47 28.49/0.51 33.58/0.44 33.60/0.50 31.58/0.49

in the supplementary materials.
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