
A. Appendix
A.1. The SDE Limit of the Overshooting Sampler
In this section, we derive the asymptotic limit of the overshooting sampler’s update as a stochastic differential equation (SDE)
by considering the infinitesimal step size ✏ ! 0 in the definitions of s and o. Recall that

s = t+ ✏, o = s+ c✏ = t+ (1 + c)✏, (12)

where c is a constant parameter. Combining the update equations (see Equation (1) and Equation (2)), we obtain

Z̃s = aẐo + b⇠
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,
(13)

We aim to express the update in the form

Z̃t+✏ ⇡ Z̃t + vadj(Z̃t, t)✏+ �t
p
✏⇠t, (14)

which corresponds to the Euler–Maruyama discretization of the SDE

dZt = vadj(Zt, t)dt+ �tdWt, (15)

with Wt denoting a standard Wiener process.
To this end, we perform a first-order Taylor expansion assuming ✏ ! 0: First, we compute a� 1:
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where we use the approximation o ⇡ t for small ✏. Next, we compute a(o� t):
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where f(x) =
�
1�x
x

�2. Using a first-order Taylor expansion of f(x) around x = s, we have
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Combining the above results, the update equation becomes

Z̃t+✏ ⇡ Z̃t + vadj(Z̃t, t)✏+ �t
p
✏⇠t, (20)

where the adjusted velocity is
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Thus, the limit SDE is
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This provides the SDE limit of the overshooting sampler as ✏ ! 0.

A.2. Stochastic Sampler by Fokker Planck Equation
As mentioned in Section 3.2, according to the Fokker-Planck Equation, for an ODE dZt = v(Zt, t)dt, we can construct a
family of SDEs that share the same marginal law as the ODE at all t:
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Now, we only need to figure out log ⇢t(Zt) and then we can find the corresponding �2
t that matches with the limiting SDE

of the overshooting algorithm. To this end, we present the next two lemmas before presenting the equivalence.

Lemma A.1. Assume random variables X = Y +Z, where Y and Z are independent, then

rx log ⇢X(x) = E[ry log ⇢Y (Y ) | X = x] = E[rz log ⇢Z(Z) | X = x],

where ⇢Z and ⇢Y are the density functions of Z and Y , respectively.

Proof.
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Lemma A.2. Given the linear interpolation in Rectified Flow Xt = tX1 + (1� t)X0, where X0 ⇠ N (0, I), we have
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tv(x, t)� x
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. (23)

Proof. As X0 and X1 are independent since X0 is the standard multivariant Gaussian and X1 is the data distribution, take
Y = tX1 and Z = (1� t)X0. According to Lemma A.1, we have
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Plugging in Equation (23) to the SDE, we have
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which matches Equation (5) exactly.

A.3. Experiment Details

Model Configurations and Hyperparameter Settings. The hyperparameter settings for the Flux (FLUX.1-dev), Stable
Diffusion 3 Medium, and AuraFlow models are summarized in Table 4. Unless stated otherwise, all experiments are conducted
with a default inference step count of 100.

Hyperparameters FLUX.1-dev Stable Diffusion 3 Medium AuraFlow

Image size 1024⇥ 1024 1024⇥ 1024 1024⇥ 1024
CFG scale 3.5 7.0 3.5
Model Precision BFloat16 Float32 Float16
Overshooting Strength c 2.0 1.0 1.0

Table 4. Hyperparameter settings for our experiments.

Human Evaluation Setup. We conducted human evaluations to assess text rendering quality and image fidelity. The details
of the human evaluation setup are as follows:
• Text Rendering Evaluation: The evaluation includes a total of 100 prompts, each consisting of 5–8 words, which are

provided in the supplementary material (prompts_human_eval.txt). Participants are presented with a text prompt
and an image generated by one of the models. They are tasked with assessing the correctness of the rendered text in the
image. Each image is evaluated by at least two participants. In total, this evaluation involved 72 unique participants.

• Comparative Evaluation of Text and Image Quality: To compare text rendering quality and overall image quality, 100
samples were selected. These include 25 prompts each from the DrawTextCreative, ChineseDrawText, and TMDBEval500
benchmarks, as well as the primary human evaluation prompts. This evaluation was conducted with 15 participants.

This comprehensive evaluation ensures a robust assessment of the model’s ability to generate high-quality images and
accurately render text.

A.4. Problem in evaluating OCR
While OCR tools provide an automatic method for assessing the correctness of rendered text in images, our experiments

reveal limitations in existing OCR systems when evaluating state-of-the-art text-to-image models such as FLUX. Specifically,
we employed Mask TextSpotter v3 [17] and found that it struggles to accurately detect and recognize text generated by FLUX.
As illustrated in Figure 9, Mask TextSpotter performs better when evaluating models like TextDiffuser and GlyphControl,
which tend to generate text with simpler layouts and standard fonts. These characteristics align more closely with the training
data of the OCR model, making detection easier. In contrast, FLUX-generated text exhibits greater stylistic flexibility and
diversity, posing significant challenges for existing OCR tools despite the text being rendered correctly. We provide examples
in Figure 9, highlighting the OCR performance disparity. The detected text boxes and predictions are shown in red. These
results underscore the need for improved OCR systems capable of handling the creative and flexible text styles generated by
advanced text-to-image models.



GlyphControlTextDiffuserFLUX-AMO

Prompt: A movie poster with a title text of 'Bedtime for Bonzo'Prompt: A TV show poster with a title text of 'Wendy and Lucy'

Prompt: A TV show poster with a title text of 'Project Power'

GlyphControlTextDiffuserFLUX-AMO

Prompt: A TV show poster with logo 'Remembrance  A Portrait Study' on it

Figure 9. Examples of OCR model performance. Detected text boxes and prediction results are shown in red. The OCR model fails to detect
text generated by the FLUX model effectively, even though the text is rendered correctly.

AMOOvershootingEuler

Prompt: In the game lobby, the game console displays "Game Over"

Prompt: The slogan "Hygiene is Everyone's Responsibility" is written in the hospital

AMOOvershootingEuler

Prompt: "Play Fair Play" sign on golf course

Prompt: Photo of a dog and a cat with their heads sticking out of a cage with 
the words "No pets allowed"

Prompt: In the scenic spot, a sign that reads "Do not trample on the lawn" Prompt: Grow in a pretty pot with a "DO NOT TOUCH" sign

Figure 10. Image Quality for Euler, Overshooting, and AMO. Please zoom in for finer details. The Overshooting method shown here
employs a one-step overshooting strategy, ensuring the overall computational cost remains comparable across all three methods. The
overshooting approach results in cartoonish, over-smoothed outputs that lack high-frequency details. In contrast, Euler and AMO generate
images that resemble real-world visuals more closely.



A.5. Additional Qualitative Results
A.5.1 Additional Results on Image Quality for Euler, Overshooting, and AMO

We present additional results in Figure 10 to further illustrate our findings. These results confirm that overshooting (without
attention modulation) tends to produce an over-smoothing effect, leading to generated samples lacking high-frequency details.

c = 3.0c = 2.0c = 0 (Euler) c = 1.0 c = 4.0 c = 5.0

Prompt: 3-d letters "dessert" made from desserts, arranged on a plate, studio shot

Prompt: In class, the teacher wrote the phrase "knowledge changes destiny" on the blackboard

Prompt: The words "healthy eating" were written on the lunch box

Prompt: Text "Unlock Creativity" sculpture photo booth made of thin colored lines

Prompt: A t-shirt that says "No Planets"

Figure 11. Samples generated by varying c. As c increases, the images gradually lose complexity and fine details due to over-smoothing.
For moderate values of c, such as c = 2, the results achieve a balance between accurate text rendering and visual quality.

A.5.2 Quantative Results on AMO with Different Overshooting Strength c

In the experiment section, we demonstrated that increasing the overshooting strength c improves text rendering accuracy, with
performance plateauing at c � 2 and occasionally declining for very large values of c. Here, we provide visual examples for



varying values of c, as shown in Figure 11. We observe that as c increases significantly, the generated images tend to exhibit
simpler structures and fewer details. This behavior is expected because the attention modulation applies a soft overshooting
strategy, where excessively large c introduces over-smoothing artifacts. However, these artifacts are significantly mitigated
compared to results generated without attention modulation.

A.5.3 Additional Samples on Comparison between Euler and AMO

We provide more results in Figure 12. showcasing the differences between the Euler sampler and our AMO method.

Prompt: In the library, a sign that reads "Please do not 
make noise"

Prompt: The words "environmental protection" are written on 
this trash can

Prompt: In the park, there is a sign "It is better to be quiet than 
to be noisy"

Prompt: A photo of a bruised apple with the words 
"apples are good for you" written in fancy lettering

Prompt: A sign saying "Do not feed" in the aquarium

Prompt: A pumpkin with a beard, a monocle and a top hat with 
the text "You Can Get Rich too" in a speech bubble

Prompt: photo of a dark cave with the word "crazy" carved into 
the wall, with a yellow light shining through the cave entrance

Prompt: a painting of a cornfield with the words "feed the 
nation" in simple letters and colors.

Prompt: the city of toronto as seen from an airplane, with a 
giant cn tower in the middle of the frame, with the text "the cn

tower" in comic sans

(a) Flux (b) SD3 (c) AuraFlow

Euler Sampler AMO

Prompt: "Don't make too much noise" signs in movie theaters Prompt: A photo of a sign that reads "Having a dog named 
Shark on the beach was a mistake"

Prompt: chunky, organic, colorful, letters "fuzzy" made from 
many furry spheres of different sizes, 3-d rendering, 

centered in the frame.

Figure 12. Comparison of text rendering quality between Euler and AMO. Results are presented across three different text-to-image
models: Flux, Stable Diffusion 3, and AuraFlow. All images are generated using the same random seed. In each pair of images, the left
column shows the results from the Euler sampler, while the right column displays results generated by our AMO method. AMO consistently
produces clearer and more legible text that aligns more closely with the given prompts, demonstrating its superiority in text rendering quality.



A.6. Additional Results on Comparison with Finetuned Text-to-Image Models

We present sample images from the human evaluation study comparing TextDiffuser, GlyphControl, Euler, Overshooting,
and AMO. These examples are shown in Figure 13. During the human evaluation, participants were presented with five images
generated by the respective methods and asked to answer two questions: Question 1: Which of the following images exhibits
the highest text rendering quality? (Multiple-choice) Question 2: Which of the following images demonstrates the best overall
image quality? (Single-choice)

Flux-EulerGlyphControlTextDiffuser

Prompt: Close up of a toothpaste tube figurine, 3D rendering, candy pastels, with the text "Brush your teeth" on the tube

Flux-Overshooting Flux-AMO

Prompt: Billboard with "My fear of moving stairs is escalating"

Prompt: a bowl of alphabet cereal, with the message "smackeroo" written in the bowl with the cereal letters

Prompt: a drawing of a badger made of mushrooms, with the word "mushroom" written above in glowing letters

Figure 13. Comparison of samples generated by different methods, including TextDiffuser, GlyphControl, Euler, Overshooting, and
AMO. During the human evaluation, participants were shown five images for comparison.

A.7. Exploring Tasks Beyond Text Rendering
Our initial exploration shows that overshooting sampler improves the rendering of details such as hands and human body
structures (see Fig. 14). However, these improvements are difficult to quantify without extensive human evaluation. Hence, we



focus on text rendering, where OCR-based metrics, supplemented by human evaluation, provide a more direct and affordable
evaluation. This work lays the groundwork for future exploration of other tasks.

Prompt: A hand gripping the edge of a cliff, fingers slipping Prompt: A yoga class with ten participants holding 
various poses in a serene studio

Euler Sampler Ours

Figure 14. Correcting hands and body structure using our method.

A.8. OCR-based Comparison with Specialized Text Rendering Models
We present the OCR results in Table 5, but it is crucial to mention that these numbers can be misleading. Current OCR tools
struggle with the diverse and artistic fonts generated by general-purpose T2I models such as Flux. Specialized text rendering
models, on the other hand, tend to produce text in a single, OCR-optimized font. Consequently, the seemingly lower OCR
scores for Flux do not necessarily indicate poorer text rendering performance. Thus we prefer human evaluation as shown in
Figure 8.

On the TMDBEval500 dataset (500 images), our manual evaluation of the OCR model revealed it has only 54% accuracy in
recognizing rendered text from Flux, compared to 92% for TextDiffuser. Furthermore, extraneous text content, often generated
by general-purpose T2I models, can negatively influence OCR-A by reducing precision.

TextDiffuser GlyphControl Flux-Euler Flux-Ours
OCR-A 0.491 0.537 0.313 0.381
OCR-F 0.625 0.591 0.458 0.494

Table 5. OCR-A and OCR-F results. Note that TextDiffuser and GlyphControl were optimized for OCR tools, while Flux’s generated text
are more diverse, leading to a lower reported score.


	. Introduction
	. Background on Rectified Flow
	. Attention Modulated Overshooting Sampler
	. Stochastic Sampling via Overshooting
	. Overshooting  Euler + Langevin Dynamics
	. Attention Modulation

	. Related Work
	. Experiment
	. Comparison with Euler Sampler
	. Ablation Studies
	. Comparison with Finetuned T2I models

	. Conclusion and Limitation
	. Acknowledgment
	. Appendix
	. The SDE Limit of the Overshooting Sampler
	. Stochastic Sampler by Fokker Planck Equation
	. Experiment Details
	. Problem in evaluating OCR
	. Additional Qualitative Results
	Additional Results on Image Quality for Euler, Overshooting, and AMO
	Quantative Results on AMO with Different Overshooting Strength c
	Additional Samples on Comparison between Euler and AMO

	. Additional Results on Comparison with Finetuned Text-to-Image Models
	. Exploring Tasks Beyond Text Rendering
	. OCR-based Comparison with Specialized Text Rendering Models


