
DepthCrafter: Generating Consistent Long Depth Sequences

for Open-world Videos

Supplementary Material

Appendix

In this supplementary material, we provide additional im-
plementation details in Appendix A and more evaluations
in Appendix B. For more visual results and details, we
highly recommend referring to the webpage: https://
depthcrafter.github.io, since the visual quality of
the generated depth sequences can be better accessed with
interactive videos. We would release the code and model to
facilitate further research and applications.

A. Implementation Details

A.1. Data Preparation

Following conventional practice in depth estimation [67,
68], we represent the depth in the disparity domain. We
target relative depth estimation, so we normalize the dispar-
ity values to the range of [0, 1] by the maximum and min-
imum disparity values in the sequence. Since the training
of our DepthCrafter only involves the U-Net model, with
the VAE freezing, we can pre-process the latents of videos
and the corresponding depth sequences in advance. This
caching mechanism significantly reduces the training time
and memory consumption, as the latents do not need to be
re-computed during the training process, and the VAE does
not need to be loaded into the memory.

A.2. Training Details

We follow the EDM-framework [31] to train our
DepthCrafter. This can be mathematically formulated
as Eqs. (1) to (3). The cin, cout, cskip, and cnoise in Eq. (3)
are the EDM preconditionining functions [31, 53]:

cin(ωt) = 1/
√
1 + ω2

t
,

cout(ωt) = →ωt/
√
1 + ω2

t
,

cskip(ωt) = 1/(1 + ω2
t
),

cnoise(ωt) = 0.25 · log(ωt).

(5)

cin and cout are used to scale the input and output magni-
tudes, cskip is used to modulate the skip connection, and
cnoise is used to map the noise level ωt into a conditioning
input for the denoiser Fω. The εεt in Eq. (2) effectively in-
curs a per-sample loss weight for balancing different noise
levels, which is set as:

εεt = 1/cout(ωt)
2. (6)

During training, we randomly sample the noise level ωt

from a log-normal distribution:

ln(ωt) ↑ N (0.7, 1.62), (7)

which is following the EDM-framework [31] to target the
training efforts to the relevant range.

We train our DepthCrafter on eight NVIDIA A100 GPUs
with a learning rate of 10→5, and a batch size of 8. We
adopted the DeepSpeed ZeRO-2 strategy, gradient check-
pointing, and mixed precision training to reduce memory
consumption during training. We also highly optimize the
U-Net structure and cache the latents to further reduce
memory consumption. The first and third training stages
consume around 40GB of GPU memory per device, while
the second stage consumes around 80GB. The “temporal
layers” mentioned in Sec. 3 are the layers performed on the
time axis, such as temporal transformer and temporal resnet
blocks. The remaining layers are spatial layers, such as spa-
tial transformers and spatial resnet blocks.

A.3. Benchmark Evaluation Details

Since existing monocular depth estimation methods and
benchmarks are mainly tailored for static images, we re-
compile the public benchmarks to evaluate the video depth
estimation methods. First, we re-format the testing datasets
in the form of videos that are originally in the form of im-
ages. Specifically, for the ScanNet V2 dataset [12], we ex-
tracted the first 90 RGB-D frames from the original sensor
data sequences at a rate of 15 frames per second. Besides,
there are black regions in the corners of the images due to
the camera calibration, which would affect the depth es-
timation evaluation. We carefully crop the borders of the
images to remove the black regions, i.e. cropping 8 pixels
from the top and bottom, and 11 pixels from the left and
right. For the KITTI dataset [19], we extracted the first 110
frames from the original sequences without downsampling
the frame rate, since the difference between consecutive
frames is relatively large. And for the Bonn dataset [44],
which was usually not included in the evaluation due to
the small scale, but we find it is a good complement to the
ScanNet dataset for indoor scenes as it contains dynamic
contents while ScanNet contains only static scenes. We se-
lected five sequences from the Bonn dataset, each with 110
frames, for evaluation. For the Sintel dataset [7], as it is a
synthetic dataset, we directly used the original sequences.

For the evaluation metrics, we followed the insight from
the commonly used metrics in the depth estimation, includ-

https://depthcrafter.github.io
https://depthcrafter.github.io


In
pu
t

1	s
tep

2	s
tep

s
3	s
tep

s
4	s
tep

s
5	s
tep

s
GT

Time

Figure S1. Effects of the number of denoising steps in our DepthCrafter. We show an example from the Bonn dataset [44], where the
depth sequences are generated with different numbers of denoising steps. The green and orange arrows indicate the regions where more
denoising steps can refine the depth details.

Table S1. Performance comparison of our DepthCrafter with different numbers of denoising steps. For reference, we also include the
results of Marigold [32] and Depth-Anything-V2 [68]. The inference speed is measured in milliseconds per frame at the resolution of
1024→576. Best and second best results are highlighted.

Method Steps
ms / frame ↓ Sintel (↑50 frames) Scannet (90 frames) KITTI (110 frames) Bonn (110 frames)

@1024↔576 AbsRel↓ ω1↗ AbsRel↓ ω1↗ AbsRel↓ ω1↗ AbsRel↓ ω1↗
Marigold [32] 1070.29 0.532 0.515 0.166 0.769 0.149 0.796 0.091 0.931
Depth-Anything-V2 [68] 180.46 0.367 0.554 0.135 0.822 0.140 0.804 0.106 0.921

DepthCrafter (Ours)

1 337.10 0.319 0.651 0.132 0.826 0.138 0.812 0.084 0.954
2 369.28 0.301 0.661 0.132 0.828 0.138 0.814 0.083 0.955
3 401.47 0.273 0.693 0.123 0.854 0.111 0.877 0.073 0.971
4 433.65 0.293 0.697 0.123 0.856 0.107 0.888 0.072 0.971
5 465.84 0.270 0.697 0.123 0.856 0.104 0.896 0.071 0.972
6 498.03 0.299 0.696 0.124 0.851 0.105 0.891 0.072 0.973

10 626.72 0.291 0.694 0.125 0.849 0.106 0.890 0.073 0.972
25 1109.42 0.292 0.697 0.125 0.848 0.110 0.881 0.075 0.971



Table S2. Effectiveness of our three-stage training strategy. We show the performance of our DepthCrafter with different training stages on
the Sintel, Scannet, KITTI, and Bonn datasets. For reference, we also include the results of Marigold [32] and Depth-Anything-V2 [68].
Best and second best results are highlighted.

Method Training Stages
Sintel (↑50 frames) Scannet (90 frames) KITTI (110 frames) Bonn (110 frames)

AbsRel↓ ω1↗ AbsRel↓ ω1↗ AbsRel↓ ω1↗ AbsRel↓ ω1↗
Marigold [32] 0.532 0.515 0.166 0.769 0.149 0.796 0.091 0.931
Depth-Anything-V2 [68] 0.367 0.554 0.135 0.822 0.140 0.804 0.106 0.921

DepthCrafter (Ours)
1 0.322 0.626 0.170 0.721 0.174 0.724 0.103 0.917
2 0.316 0.675 0.134 0.826 0.127 0.844 0.090 0.935
3 0.270 0.697 0.123 0.856 0.104 0.896 0.071 0.972

ing the absolute relative error (AbsRel) and the ϑ1 metric,
but modified the scale and shift alignment from per-image
to per-video. This is because the depth values for a video
should be consistent across frames, otherwise, the depth se-
quences would be flickering. During evaluation, we first
align the depth sequences to the ground truth by the scale
and shift, using a least-square optimization. Following Mi-
Das [49], we cap the maximum depth values to a certain
value for different datasets, e.g., 70 meters for the SinTel
dataset, 80 meters for the KITTI dataset, and 10 meters for
the ScanNet, Bonn, and NYUv2 datasets.

B. Additional Evaluations

B.1. Effect of Number of Denoising Steps

During inference, the number of denoising steps is a crucial
hyperparameter that affects the trade-off between the infer-
ence speed and the depth estimation quality. The practice
in image-to-video diffusion models [3] is to set the num-
ber of denoising steps to around 25. However, as shown
in Fig. S1, we find that the number of denoising steps can
be reduced significantly for video depth estimation, even
one step works well. This is because the video depth esti-
mation task is more deterministic than the video generation
task. And we can see in the figure that more denoising steps
would consistently improve the structure details of the gen-
erated depth sequences. In Tab. S1, we show the results of
our DepthCrafter with different numbers of denoising steps.
We can see that our DepthCrafter significantly outperforms
existing strong baselines, such as Marigold [32] and Depth-
Anything-V2 [68], even with only one denoising step. The
performance of our DepthCrafter is increased with more de-
noising steps, but the improvement gets saturated after five
steps. Thus we set the number of denoising steps to five in
our experiments, which achieves a good trade-off between
the inference speed and the depth estimation quality. The in-
ference speed of our DepthCrafter with five denoising steps
is 465.84 ms per 1024↔576 frame, which is acceptable for
many applications.

B.2. Effectiveness of Training Stages

In the main paper, we ablate the performance of our
DepthCrafter with three training stages, only on the Sin-
tel [7] dataset. To complement the evaluation, we further
evaluate the effectiveness of our three-stage training strat-
egy on all the datasets, including Sintel [7], Scannet [12],
KITTI [19], and Bonn [44]. As shown in Tab. S2, we
can observe that, even only with the first two stages, our
DepthCrafter already outperforms the existing strong base-
lines, such as Marigold [32] and Depth-Anything-V2 [68].
More importantly, the performance improvement with the
training stages is consistent across all the datasets. It in-
dicates that our three-stage training strategy is effective for
improving the generalization ability of our DepthCrafter to
diverse open-world videos.

B.3. Effects of Classifier-Free Guidance

Classifier-free guidance (CFG) is proven to be effective in
improving the details of the generated videos in video dif-
fusion models [3, 8, 9, 64, 65]. In our DepthCrafter, we also
investigate the effectiveness of CFG in video depth estima-
tion. As shown in Fig. S2, we show an example frame from
the KITTI dataset, where the results of our DepthCrafter
with and without CFG are compared. We can see that the
CFG can indeed improve the visual details of the gener-
ated depth sequences, especially for the fine-grained struc-
tures. However, we find that the CFG may slightly degrade
the quantitative accuracy of the depth estimation, as shown
in Tab. S3. This may be because the CFG is designed for im-
proving the details of the generated videos, while the depth
estimation task is more deterministic and requires more ac-
curate predictions. Since adopting the CFG would also in-
troduce additional computation, we do not use the CFG in
our DepthCrafter for the main experiments. However, if the
users are more interested in the visual details of the depth
sequences, they can consider incorporating the CFG into
our DepthCrafter.



1

Input	video	frame W/O	CFG W/	CFG

Figure S2. Effects of the classifier-free guidance (CFG) on the generated depth sequences. For better visualization, we blow up two regions
that contain structures with fine-grained details.

Table S3. Effects of the classifier-free guidance (CFG). For reference, we also include the results of Marigold [32] and Depth-Anything-
V2 [68]. Best and second best results are highlighted.

Method
Sintel (↑50 frames) Scannet (90 frames) KITTI (110 frames) Bonn (110 frames)

AbsRel↓ ω1↗ AbsRel↓ ω1↗ AbsRel↓ ω1↗ AbsRel↓ ω1↗
Marigold [32] 0.532 0.515 0.166 0.769 0.149 0.796 0.091 0.931
Depth-Anything-V2 [68] 0.367 0.554 0.135 0.822 0.140 0.804 0.106 0.921

DepthCrafter W/O CFG 0.270 0.697 0.123 0.856 0.104 0.896 0.071 0.972

DepthCrafter W/ CFG 0.315 0.692 0.123 0.850 0.108 0.885 0.076 0.972


	. Introduction
	. Related Work
	. Method
	. Preliminaries of Video Diffusion Models
	. Formulation with Diffusion Models
	. Training Strategy
	. Inference for Extremely Long Videos

	. Experiments
	. Implementation
	. Evaluation
	. Ablation Studies
	. Applications
	. Limitations

	. Conclusion
	. Implementation Details
	. Data Preparation
	. Training Details
	. Benchmark Evaluation Details

	. Additional Evaluations
	. Effect of Number of Denoising Steps
	. Effectiveness of Training Stages
	. Effects of Classifier-Free Guidance


