
Improving Autoregressive Visual Generation with
Cluster-Oriented Token Prediction

(Supplementary Material)

Teng Hu1∗, Jiangning Zhang2,3*, Ran Yi1†, Jieyu Weng1, Yabiao Wang3,2,
Xianfang Zeng3, Zhucun Xue3, Lizhuang Ma1

1Shanghai Jiao Tong University, 2Youtu Lab, Tencent, 3Zhejiang University
{hu-teng, ranyi, w.jerry, lzma}@sjtu.edu.cn,

{186368, yabiaowang, zzlongjuanfeng, 12432038}@zju.edu.cn

A. Overview

The supplementary material is composed of:
• Implementation details (Sec. B);
• More details on optimization relaxation in codebook re-

arrangement (Sec. C)
• Comparison with VAR [14] (Sec. D)
• More analysis on our model (Sec. E);
• Analysis on the cluster-oriented cross-entropy loss LCCE

(Sec. F);
• Analysis on the influence of code-rearrangement quality

(Sec. G);
• Experiments on different VQVAEs (Sec. H);
• More visualization results (Sec. I);
• Future work (Sec. J).

B. Implementation Details

Metrics. We employ four metrics to evaluate the effective-
ness of the models:
• Fréchet inception distance (FID) [4] measures the sim-

ilarity between the features of the source data and the
generated data according to their mean values and covari-
ance. A smaller FID indicates better generation ability.

• Inception Score (IS) [12] measures the quality and di-
versity of images by computing the information entropy
of the generated images. A higher IS indicates better gen-
eration quality and diversity.

• Precision/Recall [8] measures the class-conditional gen-
eration accuracy. A higher precision or recall indicates a
better class-conditional generation performance.

Experiment settings. We follow the experiment settings
as LlamaGen [13] and keep the hyperparameters consistent
with it. The experiment details are shown in Tab. A1 and

*Equal contribution.
†Corresponding author.

Tab. A2, where Tab. A2 is the inference settings for Tab. 2
of the main paper.
Sampling hyperparameters: Among the hyperparameters
used in the inference process (Tab. A2), there are several
important parameters, whose meanings are explained in de-
tail below:

(1) Classifier-free guidance: Classifier-Free Guidance
(CFG) [5] is originally a sampling method to improve dif-
fusion models by combining conditional and unconditional
score estimates. Beyond diffusion models, CFG can also be
applied to the autoregressive image generation process [13].
Denoting the input image token sequence as q, our model as
ϵθ, and the class condition as c, the autoregressive CFG is
defined as:

ϵ̃θ(q, c) = (1 + w)ϵθ(q, c)− wϵθ(q, ϕ), (A1)

where ϕ denotes the empty condition and ϵ(,) represents the
predicted probability distribution for the next image token.

(2) Top-K: Top-K sampling [11] is a decoding strategy
that selects tokens from the top k highest-probability candi-
dates. It focuses on the most likely tokens, but the fixed k
size may exclude important low-probability options.

(3) Top-P: Top-P sampling [6], also known as nucleus
sampling, selects tokens dynamically from the smallest set
whose cumulative probability meets or exceeds a threshold
p. This approach adapts to the output distribution, balancing
coherence and diversity in text generation.

(4) Temperature: In large language models (LLMs),
temperature [1, 9] is a hyperparameter that controls the ran-
domness of the generated token by adjusting the sharpness
of the probability distribution: lower values make the out-
put more deterministic, while higher values increase diver-
sity and randomness. The probability Pi for each token is
calculated as:

Pi =
exp (li/T)∑
j exp (lj/T)

,

1

where li represents the predicted probability distribution,
and T is the temperature.

C. Complexity Analysis of Codebook Rear-
rangement Target

In Sec. 3.2 of the main paper, we aim to rearrange the code-
book such that the neighboring embeddings are as close to
each other. We summarize this code rearrangement prob-
lem as an optimization problem, where we aim to find a
surjective mapping M(·) that satisfies:

M = argmin
M

N−1∑
i=1

∥zM(i), zM(i+1)∥. (A2)

After reordering each embedding zi to index M(i), the
sum of distances between adjacent embeddings is mini-
mized. And Ẑ = M(Z) is the rearranged codebook.

However, this optimization can be reduced to the Short-
est Hamiltonian path problem, which is a classical NP-
hard problem. The Shortest Hamiltonian Path Problem is
a variation of the Hamiltonian Path Problem. Its goal is to
find a path that visits each vertex exactly once and mini-
mizes the total weight (or distance) of the path. Formally,
given a weighted graph G = (V,E) with a weight func-
tion w : E → R+, the goal is to find a Hamiltonian path
π∗ = (π1, π2, . . . , πN) such that the sum of the weights
of the edges in the path, i.e.,

∑N−1
i=1 w(πi, πi+1), is mini-

mized, which is formulated as:

π∗ = argmin
π

N−1∑
i=1

w(πi, πi+1). (A3)

Next, we prove that solving the optimization problem in
Eq. (A2) can be reduced to the Shortest Hamiltonian path
problem in Eq. (A3):
Proposition: Solving Eq. (A3) ≤p Solving Eq. (A2)
Proof.

Step 1: Construct a Complete Weighted Graph:
Define a complete graph G = (V,E) where the vertex

set V = {0, 1, . . . , N − 1} corresponds to the N embed-
dings in the codebook Z . Each edge (i, j) ∈ E is assigned
a weight w(i, j) that equals to the distance between embed-
dings zi and zj :

w(i, j) = ∥zi, zj∥. (A4)

Step 2: Find the Minimum Weight Hamiltonian Path:
Finding the shortest Hamiltonian path π =

(π1, π2, . . . , πN) in G aims to minimize the total weight:

π∗ = argmin
π

N−1∑
i=1

w(πi, πi+1). (A5)

Step 3: Mapping to the Original Problem:
The shortest Hamiltonian path π∗ provides the optimal

permutation M∗ for the optimization problem in Eq. (A2),
where M∗(i) = πi, for i = 1, 2, . . . , N .

In summary, the original optimization problem (in Eq.
(A2)) of finding the optimal surjective mapping M(·) to
minimize the sum of distances between consecutive em-
beddings, can be reduced to finding the minimum weight
Hamiltonian path in a complete weighted graph, where the
weights are given by the distances between embeddings.

Therefore, the original optimization problem is also NP-
hard. And it is necessary to relax this optimization target to
a clustering problem (main paper Sec. 3.2), which ensures
the embeddings with a cluster share high similarities.

D. Comparing IAR+VAR with VAR
VAR [14] extends the next-token prediction in autoregres-
sive image generation to next-scale prediction, enabling the
model to generate images progressively from small to large
scales. At each scale, VAR predicts all tokens simultane-
ously, significantly enhancing the inference speed of the
autoregressive image generation process. Our design is in-
dependent of the model structure in autoregressive image
generation, allowing us to integrate our IAR with VAR,
referred to as VAR+IAR. Given that most official VAR
models are trained on 256 A100 GPUs, which is highly
resource-intensive, we only train the VAR-d16 model for
100 epochs on ImageNet [2] and subsequently compare it
with VAR+IAR.

Both models (VAR and VAR+IAR) are trained for 100
epochs with a batch size of 768, maintaining the same hy-
perparameters as the official VAR code. We then eval-
uate the trained models on different CFGs. The results,
presented in Tab. A3, demonstrate that incorporating IAR
into VAR enhances the original VAR in terms of gen-
eration quality and diversity, as evidenced by improved
FID and IS scores. This validates the effectiveness of
our model across different autoregressive image generation
frameworks, showing the great potential of our IAR in the
field of autoregressive image generation.

E. More Analysis on Our Model
Comprehensive metrics for models under different
CFGs. This section presents the comprehensive metrics
(FID, IS, Precision, Recall) for the models compared in Fig.
4 (a) of the main paper. As shown in Table A4, an increase
in CFG leads to higher IS and precision, while recall de-
creases. Unlike these three metrics, FID initially improves
and then deteriorates, achieving its optimal value at an inter-
mediate CFG. Furthermore, the optimal CFG for FID varies
with model size (e.g., CFG=2.25 for IAR-B and CFG=1.75
for IAR-L).

Model B L XL XXL B L XL XXL

Parameter Num 111M 343M 775M 1.4B 111M 343M 775M 1.4B

Token Num 16×16 24×24

Optimizer AdamW
Weight decay 0.05
Learing Rate Scheduler Constant

Batch Size 256 256 256 256 256 256 256 512
Learning Rate 1E-04 1E-04 2E-04 2E-04 1E-04 1E-04 2E-04 2E-04
GPU Num 8 8 8 8 8 8 16 32
Epoch 300 300 50 50 300 300 300 300
FSDP No No No Yes No No No Yes

Table A1. The training settings and hyperparameters used in our model.

Model B L XL XXL B L XL XXL

Parameter Num 111M 343M 775M 1.4B 111M 343M 775M 1.4B

Token Num 16×16 24×24

Batch Size 32
Random Seed 0
Top K 0
Top P 1.0
Temperature 1.0

CFG 2.0 2.0 1.75 2.0 2.25 1.75 1.75 1.65

Table A2. The inference settings and hyperparameters used in Tab. 2 of the main paper.

Comprehensive metrics for models under different
training epochs. Table A5 presents a comparison between
our IAR and LlamaGen [13] over various training epochs,
illustrating that our model consistently outperforms Llama-
Gen at all stages of training. Notably, the 200-epoch IAR-
B exceeds the performance of the 300-epoch LlamaGen-
B, while the 200-epoch IAR-L performs similarly to the
300-epoch LlamaGen-L, highlighting the high training ef-
ficiency of our model. (Note that all B-version models use
CFG=2.25, whereas all L-version models use CFG=1.75)

Training losses for different model sizes. We show
the training loss curves for both the two losses: 1) cluster-
oriented cross-entropy loss LCCE and the token-oriented
cross-entropy loss LTCE when training on 24 × 24 image
tokens (Fig. A1) and 16 × 16 image tokens (Fig. A2). It
can be seen that as the model size increases, both the two
losses decrease faster and converge to a lower value, which
aligns with the scaling law [7]. Note that since we follow
the training setting of LlamaGen [13], we only train IAR-
XL and IAR-XXL on 16× 16 image tokens for 50 epochs.

Effectiveness of LCCE. In the main paper, we in-
troduce the cluster-oriented cross-entropy loss LCCE , de-
signed to enhance the model’s awareness of cluster infor-
mation, thereby increasing the likelihood of predicting to-

kens within the target cluster. It is hard to directly illus-
trate the effectiveness of LCCE by its loss value directly.
Therefore, we design an alternative way where we visu-
alize the loss curves for token-oriented cross-entropy loss
LTCE and their corresponding FIDs for LlamaGen-B and
our model in Fig. A3. The results indicate that, compared
to LlamaGen, our model exhibits a higher token-oriented
cross-entropy loss but achieves a superior FID. This sug-
gests that our model has slightly lower token-oriented pre-
diction accuracy, which is expected since the introduction of
LCCE partially diverts the original loss LTCE . Therefore,
the improvement of FID can only come from our proposed
cluster-oriented cross-entropy loss LCCE . Since LCCE ef-
fectively increases the likelihood of predicting the correct
cluster, combined with the embedding similarities within
the cluster, it ultimately leads to the generation of images
with better FID, demonstrating the efficacy of LCCE in our
model.

Token prediction accuracy. We compute the token pre-
diction accuracy of our model and LlamaGen [13] on dif-
ferent model sizes (24× 24 tokens). Specifically, for an im-
age token sequence q = {q1, q2, · · · q576} with correspond-
ing image embedding sequence zq = {z1q , z2q , · · · z576q } and
class label c, we enumerate i from 1 to 575 and predict

Classifier-free
Guidance

VAR-d16 + IAR VAR-d16
FID↓ IS↑ Precision↑ Recall↑ FID↓ IS↑ Precision↑ Recall↑

1.5 4.12 58.15 0.839 0.482 4.28 56.66 0.830 0.479
1.75 4.07 60.54 0.857 0.458 4.25 59.00 0.846 0.460
2.0 4.43 63.11 0.865 0.435 4.52 61.00 0.860 0.435

Table A3. Comparing VAR-d16 [14] with VAR+IAR on ImageNet [2]. It shows that our IAR also performs well in the next-scale prediction
model, validating that our method can be widely applied to various autoregressive image generation models, enhancing their generative
capabilities.

Classifier-free
Guidance

IAR-B IAR-L
FID↓ IS↑ Precision↑ Recall↑ FID↓ IS↑ Precision↑ Recall↑

1 29.70 43.96 0.566 0.632 20.56 62.96 0.595 0.666
1.5 10.69 103.59 0.732 0.532 4.39 178.78 0.778 0.566

1.75 7.43 135.55 0.783 0.501 3.18 234.79 0.824 0.530
2 6.06 165.22 0.822 0.454 3.49 279.09 0.855 0.499

2.25 5.77 192.45 0.850 0.421 4.43 311.08 0.873 0.466
2.5 6.11 213.76 0.869 0.381 5.61 340.18 0.890 0.425

2.75 6.73 232.35 0.884 0.360 6.74 358.48 0.898 0.401

Table A4. The Quantitative metrics on our model under different classifier-free guidance scales.

q̂i+1 ∼ P i+1 = ϵθ(q̂
i+1|c, q1, q2, · · · qi) using the model

ϵθ. We then compute the Top-1 and Top-5 accuracy Acci

between q̂i+1 and the ground truth qi+1. The average accu-
racy for an image is calculated as Acc = 1

575

∑575
i=1 Acci.

Finally, we compute the cluster-level accuracy and token-
level accuracy for all images in ImageNet [2] and record
the average values in Tab. A6. Specifically, to compute
the cluster-level accuracy for LlamaGen, we employ the
balanced K-means clustering algorithm to decompose the
codebook into n clusters and then determine the target clus-
ter index. We then assess whether the predicted token is
located in the target cluster, thereby obtaining the cluster-
level accuracy. From Tab. A6, it can be seen that our cluster-
level accuracy is higher than that of LlamaGen, indicating
the effectiveness of our cluster-oriented cross-entropy loss
LCCE . Although our token-level accuracy is slightly lower,
this is expected as the newly included loss LCCE affects
the original token-oriented cross-entropy loss LTCE , result-
ing in a slight decrease in token-level accuracy. However,
our model still achieves better FID and IS compared to Lla-
maGen, further validating the effectiveness of our cluster-
oriented token prediction strategy.

F. Analysis on the Cluster-oriented Cross-
entropy Loss

In Tab. 3 of the main paper, the model trained with only the
cluster-oriented cross-entropy loss LCCE (without code-
book rearrangement) also improves generation performance
(FID 6.96 vs. 7.14 for the baseline). This improvement
arises because LCCE enhances the probability of predicting
the correct cluster, which is computed based on the proba-

bilities of all tokens within the cluster. Minimizing LCCE

consequently increases the probability of the target token.
Furthermore, since LCCE boosts the probabilities of all to-
kens in the target cluster, it can be viewed as a variant of
label smoothing, which is known to improve generaliza-
tion and model calibration in classification networks [10].
However, as shown in Table A7, standard label smooth-
ing is not well-suited for autoregressive visual generation
models, where token prediction accuracy is typically low
(e.g., 2%–4% top-1 accuracy, as shown in Table A6), in
contrast to traditional classification tasks with significantly
higher accuracy (e.g., > 70%). In contrast, LCCE performs
structured smoothing within specific ranges rather than uni-
formly smoothing all tokens, leading to improved AR gen-
eration quality. While LCCE enhances model performance,
the best results are achieved only when it is combined with
our codebook rearrangement strategy. Therefore, the good
performance of our IAR is attributed to both the code-
book rearrangement strategy and the cluster-oriented cross-
entropy loss.

G. Analysis on the Influence of Code-
rearrangement Quality

Our IAR employs a code-rearrangement strategy to clus-
ter similar codes, with the hypothesis that better clustering
quality theoretically enhances generation performance. To
validate this, we average the mean distance of each clus-
ter as a metric to evaluate clustering quality, where a lower
mean distance indicates a higher codebook rearrangement
quality. We train LlamaGen-B on codebooks with varying
clustering qualities (different mean distances, obtained by

Model Size Epoch LlamaGen IAR
FID↓ IS↑ Precision↑ Recall↑ FID↓ IS↑ Precision↑ Recall↑

B Version

50 8.67 136.62 0.818 0.413 7.80 153.31 0.839 0.394
100 7.26 152.50 0.827 0.416 6.77 171.73 0.839 0.416
200 6.54 167.82 0.833 0.428 5.86 185.28 0.845 0.428
300 6.09 182.54 0.845 0.416 5.77 192.45 0.850 0.421

L Version

50 4.25 191.46 0.819 0.504 4.35 197.23 0.819 0.507
100 3.96 199.96 0.803 0.532 3.81 205.63 0.805 0.528
200 3.33 219.57 0.804 0.538 3.31 225.95 0.814 0.551
300 3.29 227.83 0.818 0.532 3.18 234.79 0.824 0.530

Table A5. The Quantitative metrics on our model and LlamaGen under different training epochs. The B version employs CFG=2.25 and
the L-version employs CFG=1.75.

(a) Cluster-oriented loss Iteration (b) Token-oriented loss Iteration

Figure A1. The training loss curves for the cluster-oriented cross-entropy loss LCCE (a) and token-oriented cross-entropy loss LTCE (b)
on 24× 24 image tokens.

setting different clustering iterations in Balanced k-means
Clustering) for 100 epochs to investigate how clustering
quality affects performance. Results in Table A8 demon-
strate that improved clustering quality leads to better model
generation performance.

H. Experiments on Different VQVAEs

To show the effectiveness and generalization ability of our
method, we further conduct experiments on the VQVAE
from VQGAN [3], where we train LlamaGen-B on it for
100 epochs. As shown in Tab. A9, our IAR consistently im-
proves the generation quality for the model based on VQ-
GAN, demonstrating the effectiveness of our IAR across
different VQVAEs.

We further compute the mean / closest / largest L2 dis-
tance in each cluster for the rearranged and original code-
book from LlamaGen and VQGAN, to validate the effec-
tiveness of our code rearrangement strategy. The results in
Tab. A10 show that our method stably decreases the three
distances. Moreover, it can be seen that the closest dis-
tance in VQGAN is 5× 10−7, indicating that some embed-
dings are almost the same, resulting in some embeddings
being wasted (e.g., the closest distance of VQGAN (5e-7) is

very low, causing the worst reconstruction PSNR (20.00)).
Therefore, it motivates us that the closest distance can be
used as a metric to evaluate the training of a VQVAE.

I. More Visualization Results
We exhibit more generated images from our model in
Fig. A4∼A7, where the images are generated by The XXL-
version with 4.0 CFG, with image size 384×384. We show
16 classes of images, including alp, promontory, volcano,
coral reef, sports car, balloon, convertible, space shuttle,
castle, church, beacon, cinema, bridge, ocean liner, white
stork, and Pomeranian.

J. Future Work
The main idea of our IAR is to ensure a high similarity be-
tween the predicted image embedding and the target em-
bedding, so that even if the model incorrectly predicts the
target token, the output image still closely resembles the
target image. This can be naturally considered as a contin-
uous constraint on the image embedding, aiming to min-
imize the distance between the predicted and target im-
age embeddings. However, this approach cannot be eas-
ily applied to LLM-based image generation models due to

(a) Cluster-oriented loss Iteration (b) Token-oriented loss Iteration

Figure A2. The training loss curves for the cluster-oriented cross-entropy loss LCCE (a) and token-oriented cross-entropy loss LTCE (b)
on 16× 16 image tokens.

Model IAR LlamaGen [13]
B L XL XXL B L XL XXL

Cluster-level Accuracy (Top-1, %) 15.54 17.12 18.01 19.02 13.44 14.81 15.71 16.49
Cluster-level Accuracy (Top-5, %) 41.48 44.68 46.30 48.29 30.37 33.13 34.87 36.38
Token-level Accuracy (Top-1, %) 2.62 3.17 3.56 3.88 2.64 3.19 3.59 3.95
Token-level Accuracy (Top-5, %) 7.34 8.86 9.90 10.75 7.37 8.91 9.98 10.96

Table A6. Comparison of the token-level prediction accuracy, cluster-level prediction accuracy, and the embedding-level MSE distance
between our IAR and LlamaGen.

Figure A3. Comparison between LlamaGen-B and ours on the
token-oriented cross-entropy loss LTCE and the FID score in
different training iterations. Our model has a higher LTCE than
that of LlamaGen but achieves a better FID, indicating the effec-
tiveness of our cluster-oriented cross-entropy loss LCCE .

the non-differentiable nature of the embedding quantization
operation. Therefore, this paper relaxes the problem into
a cluster-oriented token prediction problem, which can be
easily integrated into the current autoregressive image gen-
eration model. We believe that in future work, employing
this continuous constraint in autoregressive image genera-
tion may further enhance the model performance.

Model FID↓ IS↑ Precision↑ Recall↑

LlamaGen 6.05 182.5 0.84 0.42
LlamaGen + IAR 5.77 192.5 0.85 0.42
LlamaGen + LS 8.58 166.81 0.80 0.40

Table A7. Comparison with the model with label smoothing,
where we train LlamaGen-B with default smoothing factor 0.1 for
300 epochs. It shows that the vanilla label smoothing is not suit-
able for AR generation models with low token prediction accuracy.

Mean Dis FID↓ IS↑ Precision↑ Recall↑

0.689 6.77 171.73 0.84 0.42
0.850 6.85 170.54 0.84 0.41
1.239 6.91 169.32 0.84 0.41

Table A8. Generation performance from codebooks with different
clustering quality.

References
[1] David H. Ackley, Geoffrey E. Hinton, and Terrence J. Se-

jnowski. A learning algorithm for boltzmann machines. Cog-
nitive Science, 1985. 1

[2] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In CVPR, 2009. 2, 4

[3] Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming

VQVAE IAR FID↓ IS↑ Precision↑ Recall↑

LlamaGen 7.14 166.38 0.84 0.40
LlamaGen ✓ 6.77 171.73 0.84 0.42
VQGAN 6.90 176.71 0.84 0.40
VQGAN ✓ 6.75 194.64 0.85 0.40

Table A9. Experiments on different VQVAEs. Our IAR consis-
tently improves the performance of the model trained on different
VQVQEs.

VQVAE IAR Mean↓ Closest↓ Largest↓ PSNR ↑

LlamaGen 2.06 0.20 4.30 20.79
LlamaGen ✓ 0.69 0.18 1.91 20.79
VQGAN 24.75 5e-7 1072.06 20.00
VQGAN ✓ 8.69 5e-7 44.68 20.00

Table A10. Comparison between the original and rearranged
codebooks from Llamagen and VQGAN. Our code rearrangement
strategy can consistently improve the inner-cluster similarity for
both the two codebooks.

transformers for high-resolution image synthesis. In CVPR,
2021. 5

[4] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner,
Bernhard Nessler, and Sepp Hochreiter. Gans trained by a
two time-scale update rule converge to a local nash equilib-
rium. In NeurIPS, 2017. 1

[5] Jonathan Ho and Tim Salimans. Classifier-free diffusion
guidance. arXiv preprint arXiv:2207.12598, 2022. 1

[6] Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin
Choi. The curious case of neural text degeneration. In ICLR,
2019. 1

[7] Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B
Brown, Benjamin Chess, Rewon Child, Scott Gray, Alec
Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for
neural language models. arXiv preprint arXiv:2001.08361,
2020. 3

[8] Tuomas Kynkäänniemi, Tero Karras, Samuli Laine, Jaakko
Lehtinen, and Timo Aila. Improved precision and recall met-
ric for assessing generative models. In NeurIPS, 2019. 1

[9] Enrique Manjavacas, Folgert Karsdorp, Ben Burtenshaw,
and Mike Kestemont. Synthetic literature: Writing science
fiction in a co-creative process. In CCNLG, 2017. 1

[10] Rafael Müller, Simon Kornblith, and Geoffrey E Hinton.
When does label smoothing help? Advances in neural in-
formation processing systems, 32, 2019. 4

[11] Andrea Pietracaprina, Matteo Riondato, Eli Upfal, and Fabio
Vandin. Mining top-k frequent itemsets through progressive
sampling. DATAMINE, 2010. 1

[12] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki
Cheung, Alec Radford, and Xi Chen. Improved techniques
for training gans. In NeurIPS, 2016. 1

[13] Peize Sun, Yi Jiang, Shoufa Chen, Shilong Zhang, Bingyue
Peng, Ping Luo, and Zehuan Yuan. Autoregressive model
beats diffusion: Llama for scalable image generation. arXiv
preprint arXiv:2406.06525, 2024. 1, 3, 6

[14] Keyu Tian, Yi Jiang, Zehuan Yuan, Bingyue Peng, and Li-
wei Wang. Visual autoregressive modeling: Scalable image

generation via next-scale prediction. In NeurIPS, 2024. 1, 2,
4

Figure A4. The generated images for alp, promontory, volcano, and coral reef by IAR-XXL with 4.0 CFG.

Figure A5. The generated images for sports car, balloon, convertible, and space shuttle by IAR-XXL with 4.0 CFG.

Figure A6. The generated images for castle, church, beacon, and cinema by IAR-XXL with 4.0 CFG.

Figure A7. The generated images for bridge, ocean liner, white stork, and Pomeranian by IAR-XXL with 4.0 CFG.

	Overview
	Implementation Details
	Complexity Analysis of Codebook Rearrangement Target
	Comparing IAR+VAR with VAR
	More Analysis on Our Model
	Analysis on the Cluster-oriented Cross-entropy Loss
	Analysis on the Influence of Code-rearrangement Quality
	Experiments on Different VQVAEs
	More Visualization Results
	Future Work

