
Appendix
A. Additional Experiments
Advantage of token pruning in synthetic data beyond ac-
celeration. When using inversion to generate data by opti-
mizing Eq. (1), it primarily crafts only the label-relevant
features into the synthetic data (typically the foreground
regions), while background regions often remain noisy as
initialization. To further illustrate this, the experiment in
Tab. 6 shows that, during the inversion process, the clas-
sification loss Eq. (1) caused by the identified foreground
steadily decreases, whereas the loss caused by the identi-
fied background remains nearly unchanged. As such, mask-
ing the background in synthetic data helps to reduce noise,
which aligns with our experimental results in Tab. 2: prun-
ing background tokens in the synthetic CIFAR-FS data led
to a 1.34% improvement in performance.

Table 6. Loss tracking during inversion process.
Area Classification Loss Change in Eq. (1)

Inverted Backgrounds 10.78 → 10.72
Inverted Foregrounds 10.78 → 0.12

Effect of cross-task interpolation. Tab. 7 verifies the effec-
tiveness of the cross-task interpolation under a constrained
LoRA budget of 100 on CIFAR-FS. This technique can di-
versify the task distribution by generating multiple inter-
polated tasks, which enables the meta-training to cover a
broader range of tasks, thereby bolstering the generalization
capabilities for unseen tasks.

Table 7. Effect of cross-task interpolation.
Ablation 5-way 1-shot 5-way 5-shot

w/o cross-task interpolation 87.97 96.81
w/ cross-task interpolation 89.69 97.05

Effect of meta-learning in LoRA Recycle. To assess the
effectiveness of meta-learning, we compared it against joint
supervised learning within the LoRA Recycle framework.
In joint supervised learning, data from all LoRAs is aggre-
gated to train a single LoRA through standard supervised
learning. The comparative results for meta-learning and
joint supervised learning are presented in Tab. 8. Experi-
ments were conducted on the CIFAR-FS dataset, focusing
on unseen few-shot tasks to evaluate generalization capabil-
ities. As shown, meta-learning achieves significantly better
performance than joint supervised learning in both 1-shot
and 5-shot settings. This improvement arises because meta-
learning’s bi-level optimization is inherently designed to en-
hance generalization to unseen few-shot tasks.
Effect of synthetic data in LoRA Recycle. In our setting,
the original training data for each LoRA is unavailable. To
evaluate the effectiveness of the synthetic data, we use the

Table 8. Effect of meta-learning in LoRA Recycle.
Ablation 5-way 1-shot 5-way 5-shot

joint supervised learning 78.22 94.56
meta-learning 89.69 97.05

results obtained from the original training data as an upper
bound for comparison. As shown in Table 9, the perfor-
mance on CIFAR-FS achieved with synthetic data is close
to that obtained with the original training data, demonstrat-
ing the effectiveness of the synthetic data in LoRA Recycle.

Table 9. Effect of synthetic data in LoRA Recycle.
Ablation 5-way 1-shot 5-way 5-shot

original training data 91.21 98.93
synthetic data 89.69 97.05

Meta-learn what? Our framework meta-trains an extra
lightweight LoRA while keeping the original VFM frozen.
Based on the results shown in Tab. 10, we summarize some
findings: (i) Meta-training the entire VFM is inferior to
only meta-training the extra LoRA. Meta-training the en-
tire VFM might distort the original feature space [41], lead-
ing to bias to meta-training tasks and heavy costs of com-
putation and storage. Meta-training the extra LoRAs can
preserve the knowledge of foundation models learned from
large-scale pretraining while injecting task-specific knowl-
edge into extra LoRAs. (ii) Only meta-training the last 6
LoRA layers can outperform meta-training all LoRA layers.
The improvements are more obvious in 5-way 1-shot learn-
ing, suggesting that reducing learnable parameters possibly
avoids overfitting with limited training data. Only meta-
training the first 6 LoRA layers is less effective. This is
because only updating the shallow layers is insufficient to
develop effective representations compared with updating
the deep layers.

Table 10. Meta-learn what?

Learnable Parts 5-way 1-shot 5-way 5-shot

Entire VFM 88.40 95.73
LoRA (all 12 layers) 89.69 97.05

LoRA (the first 6 layers) 85.45 95.13
LoRA (the last 6 layers) 90.40 96.10

Effect of constructed mask. We use the constructed mask
instead of attention weights to prune tokens before the first
layer in meta-training. This choice is motivated by the ob-
servation that shallow-layer attention weights are less accu-
rate than deep-layer weights [39, 54], as shallow layers lack
the fine-grained information captured by deeper layers. By
leveraging final-layer attention information, our constructed
mask offers more accurate guidance to identify the most
informative tokens in the synthetic image. As shown in
Tab. 11, under the same pruning ratio (75%), using the con-



Figure 5. Visualization of synthetic images with (left) and without (right) the naturalness prior RBN.

structed mask yields significantly better performance than
using first-layer attention on CIFAR-FS.

Table 11. Effect of constructed mask.
Ablation 5-way 1-shot 5-way 5-shot

first-layer attention weight 83.62 92.43
constructed mask 89.70 96.69

Experiments on more challenging dataset, Meta-Dataset
[61]. We evaluate our proposed LoRA Recycle framework
on the Meta-Dataset, a benchmark specifically designed to
test few-shot learning models across a variety of challeng-
ing domains. This dataset provides a rigorous evaluation
setting. The results, summarized in Tab. 12, demonstrate
the effectiveness of LoRA Recycle compared to other base-
lines. Notably, LoRA Recycle achieves superior perfor-
mance in both the 5-way 1-shot and 5-way 5-shot settings,
while also offering the advantage of being fine-tuning-free.

Table 12. Experiments on more challenging Meta-Dataset.
Method Fine-Tuning-Free 5-way 1-shot 5-way 5-shot

MOLE % 61.87 76.31
LoRAHub % 63.14 77.24

LoRA Recycle (ours) ! 68.48 80.12

Experiments on more types of Vision Transformers. In
this section, we evaluate the performance of our LoRA Re-
cycle framework across multiple Vision Transformers on
the CIFAR-FS dataset, further demonstrating its general-
izability. We experiment with three popular Vision Trans-
former architectures: ViT-B (CLIP), DeiT-B [58], and LV-
ViT-M [37]. Each model is compared using LoRAHub as a
baseline. Tab. 13 presents the results of these experiments.
The performance is evaluated in both 5-way 1-shot and 5-
way 5-shot scenarios. As shown, LoRA Recycle consis-
tently outperforms the LoRAHub baseline, while also of-
fering the advantage of being fine-tuning-free.

Table 13. Experiments on more types of Vision Transformers on
CIFAR-FS.

Model Method Fine-Tuning-Free 5-way 1-shot 5-way 5-shot

ViT-B (CLIP) LoRAHub % 81.02 96.24
LoRA Recycle (ours) ! 91.03 97.05

DeiT-B [58] LoRAHub % 79.52 93.32
LoRA Recycle (ours) ! 88.31 94.72

LV-ViT-M [37] LoRAHub % 80.42 94.23
LoRA Recycle (ours) ! 89.52 95.35

Experiments on tasks beyond few-shot learning. In this

section, we extend our evaluation to zero-shot classifica-
tion tasks, demonstrating the versatility of LoRA Recycle
beyond few-shot learning. To enable zero-shot classifica-
tion, we recycle pre-tuned LoRAs from CLIP by replac-
ing the classification loss used in Eq. (1) and Eq. (4) with
the contrastive loss employed by CLIP. Tab. 14 presents
the results on the Meta-Dataset for zero-shot classification.
As shown, LoRA Recycle significantly outperforms other
baseline methods, including MOLE and LoRAHub, both
of which require fine-tuning. LoRA Recycle, being fine-
tuning-free, achieves a higher accuracy, illustrating its ef-
fectiveness in adapting to zero-shot classification tasks.

Table 14. Experiments on zero-shot classification on Meta-
Dataset.

Method Fine-Tuning-Free 5-way 0-shot

MOLE % 59.36
LoRAHub % 60.25

LoRA Recycle (ours) ! 64.52

Recycle LoRAs with different ranks. Tab. 15 verifies
the architecture-agnostic feature of our LoRA Recycle ap-
proach. Our approach can reuse pre-tuned LoRAs with dif-
ferent ranks (e.g., 50% LoRAs with the rank of 4 and 50%
LoRAs with the rank of 8). This is a distinctive advantage
absent in existing baselines, thereby extending its practical
applicability across various real-world scenarios.

Table 15. Architecture-agnostic property of our framework. We
conduct experiments on CIFAR-FS and set the rank of meta-LoRA
as 4. We reuse pre-tuned LoRAs with different ranks (e.g., 50%
LoRAs with the rank of 4 and 50% LoRAs with the rank of 8).

Rank of pre-tuned LoRAs 5-way 1-shot 5-way 5-shot

100%: 4 89.69 97.05
50%: 4 + 50%: 8 90.67 97.12

Cross validation. Tab. 16 shows our consistent superiority
compared with other baselines by exchanging meta-training
and meta-testing domains.
Results of ViT-B/32. Tab. 17 show the results when using
ViT-B/32 with a 32 × 32 input patch size as the imple-
mentation of VFM. In the “recycle in-domain LoRAs” sce-
nario, our LoRA Recycle consistently outperforms the best
fine-tuning-based baselines by a large margin, up to 8.93%
and 1.40% for 1-shot and 5-shot learning, respectively. It
also exceeds the leading fine-tuning-free baselines by up to
10.39% and 2.89% for 1-shot and 5-shot learning, respec-



Table 16. Cross validation by exchanging meta-training and
meta-testing domains. [meta-training domains]→[meta-testing
domain]. D1: MiniImageNet, D2: CUB, D3: CropDiseases. 51:
5-way 1-shot. 55: 5-way 5-shot.

Method [D2, D3] → [D1] [D1, D3] → [D2] [D1, D2] → [D3]

51 55 51 55 51 55

LoRAHub + NN 81.02 93.18 85.27 95.23 76.21 92.31

LoRA Recycle75 (ours) 86.12 95.03 90.02 97.12 80.19 94.02

tively. Fig. 6 shows the visualization of synthetic images
and their masked versions generated from ViT-B/32.
Visualization of masked synthetic images at varying
sparsity levels. Fig. 7 illustrates synthetic images masked
at varying sparsity levels. As we can see, only a subset
of tokens carry meaningful semantic information and con-
tribute to the final predictions, while the rest often represent
noise, constructed as hallucinations of the VFM’s misinter-
pretations. Our method can effectively filter out those noisy
tokens and preserve the meaningful tokens, thus effectively
preventing VFM from overfitting to irrelevant noise.
Comparison with SOTA model inversion approach.
Fig. 8 illustrates that the quality of our model inversion
approach surpasses current state-of-the-art (SOTA) meth-
ods like CMI [11], which typically produce simpler, lower-
resolution images from shallow pre-trained models. Our
approach excels in three key areas: (i) quality, producing
higher fidelity images; (ii) resolution, capable of generating
complex images with higher resolutions of 224 × 224; and
(iii) efficiency, with our double-efficient mechanism signif-
icantly accelerating the model inversion process. Moreover,
our work investigates the inversion from transformer-based
models, whereas existing methods mainly concentrate on
convolutional architectures such as ResNet.
T-SNE visualization. Fig. 9 presents the t-SNE visualiza-
tions of images generated from LoRAs pre-tuned on di-
verse datasets, including CIFAR-FS; MiniImageNet, VGG-
Flower, and CUB. Our model inversion approach success-
fully inverts the essential discriminative features.
Effect of the naturalness prior. Fig. 5 shows the efficacy
of the regularization term RBN in Eq. (1) to enhance the
realism of images by enriching natural color and smoothing
noise. We set the coefficient αBN as 0.01.

B. Preliminary of Vision Transformers (ViTs)
Preliminary of ViTs. Here, we discuss the operational
mechanism behind ViTs. ViTs initially divide the input
image XI belonging to the space RH×W×C into n +
1 distinct, non-overlapping patches. These patches are
then transformed into n + 1 tokens, denoted as XI =
[x[CLS],x1, ...,xn] where xi ∈ RD. The class token,
x[CLS], is prepended to these image tokens to facilitate
the classification task. To integrate positional relationships,
learnable position encodings are added to all tokens. These

tokens are then processed through multiple ViT layers,
which are composed of multi-head self-attention (MHSA)
modules and feed-forward networks (FFN). Within each
MHSA, the token set XI undergoes the transformation into
three distinct matrices: the query Q, key K, and value V
matrices. The formulation of the attention mechanism is
given by

Attention(Q,K,V ) = Softmax

(
QKT

√
d

)
V , (7)

where d represents the dimension of the query vectors
within Q. We define A as the square matrix represent-
ing the attention weights across all token pairs, calculated
as A = Softmax

(
QKT

√
d

)
, with dimensions R(n+1)×(n+1).

Specifically, ai, which is the ith row of A, signifies the at-
tention weights of token xi with respect to all tokens. Par-
ticularly, a[CLS] refers to a0. Based on Eq. (7), the ith

output token can be viewed as a linear combination of all
tokens’ value vectors [v[CLS],v1, ...,vL], weighted by ai.
These output tokens are subsequently forwarded to the FFN,
which consists of two linear layers and an activation func-
tion. At the final ViT layer, the class token x[CLS], sum-
marizing the global image representation, is utilized as the
classifier’s input to predict the image’s classification proba-
bility distribution.
Computational complexity of ViTs. Given an image split
into N patches, each with an embedding dimension of D,
the computational complexities of self-attention (SA) and
feed-forward network (FFN) in ViTs are :

O(SA) = 3ND2 + 2N2D, O(FFN) = 8ND2. (8)

Since the complexities of SA and FFN scale respectively
quadratically and linearly with N , our proposed double-
efficient mechanism (see Sec. 4.3) significantly reduces the
computational complexity by reducing the number of to-
kens.

C. Hyperparameter Selection and Sensitivity
Analysis

In this section, we detail the selection of hyperparameters
and conduct a sensitivity analysis on key hyperparameters.
Generally speaking, We base our hyperparameter values on
reference works and perform grid searches within the rele-
vant ranges to identify the optimal configurations.

For the learning rate in LoRA Inversion, we refer to the
settings from prior work [80], and perform a grid search
over the range [0.1, 0.25, 0.5]. Similarly, for the learning
rate in the meta-learning stage, we adopt values from the
literature [56] and conduct a grid search over the range
[0.001, 0.01, 0.1]. These ranges allow us to identify the op-
timal configurations.



Table 17. Recycle in-domain LoRAs. VFM is implemented with ViT-B/32. FT refers to fine-tuning-based baselines and FTF refers to
fine-tuning-free baselines. LoRA Recyclex indicates x% tokens in synthetic data are masked (i.e., different sparsity ratios). For a fair
comparison between different sparsity ratios, we perform token pruning at the same layer (i.e., at the last layer). Superscripts represent
performance gains over the best FT baselines, while subscripts indicate gains over the best FTF baselines.

Method CIFAR-FS MiniImageNet Flower-VGG CUB

5-way 1-shot 5-way 5-shot 5-way 1-shot 5-way 5-shot 5-way 1-shot 5-way 5-shot 5-way 1-shot 5-way 5-shot

FT

Full Finetuning 20.02 20.32 20.07 20.01 20.00 20.08 20.01 20.03
Linear-probe 76.92 92.93 81.28 92.95 85.12 96.71 78.76 94.88
Lora + Linear 76.44 94.85 79.20 93.60 83.17 96.57 76.39 95.43
P > M > F 77.45 94.92 79.31 93.02 84.53 96.46 77.42 96.41
Loras Avg + Linear 78.35 95.03 79.97 93.61 85.00 96.64 78.96 95.31
MOLE 78.62 95.23 79.41 93.43 85.12 96.43 79.02 95.38
LoraHub 79.48 95.36 80.12 93.93 85.63 96.69 79.54 95.48

FTF

NN 75.69 91.91 78.38 92.55 86.47 96.62 77.71 93.99
Loras Avg + NN 77.05 92.56 79.63 92.60 84.21 96.35 76.32 93.61
CAML 78.02 93.23 80.83 93.14 85.35 96.54 78.02 94.12

LoRA Recycle 87.37 95.93 84.65 95.03 91.92(+6.29%)
(+5.45%) 97.65 85.81(+6.27%)

(+7.79%) 95.95(+0.47%)
(+1.83%)

LoRA Recycle25 87.91 96.09 84.93 95.06 90.49 97.73(+1.02%)
(+1.11%) 84.61 95.73

LoRA Recycle50 88.41(+8.93%)
(+10.39%) 96.12(+0.76%)

(+2.89%) 85.61(+4.33%)
(+4.78%) 95.33(+1.40%)

(+2.19%) 90.29 97.52 84.85 95.57
LoRA Recycle75 85.99 95.41 83.75 94.56 89.89 97.72 84.09 95.27

CIFAR-FS (32→224) MiniImageNet (84→224) VGG-Flower (84→224) CUB (84→224)

Figure 6. Visualization of synthetic images (odd line) and their 75% token-masked versions (even line) from ViT-B/32. (32 → 224) denotes
the original training images’ resolution is 32 × 32 while we can reconstruct images with a higher resolution of 224 × 224. Note that the
size of each patch is 32 × 32, instead of 16 × 16.

We further conduct sensitivity analysis of the hyperpa-
rameter αR in Eq. (1), as it controls the balance during the
inversion process. To analyze this, we conducted experi-
ments on the CIFAR-FS dataset in both 5-way 1-shot and
5-way 5-shot settings. Tab. 18 shows the results, where we
varied the value of αR to observe its effect on accuracy. Our
sensitivity analysis reveals that our framework is not very
sensitive to changes in αR, although there are some varia-
tions among different αR values. This stability simplifies
the hyperparameter tuning process, making our framework
easier to apply in real-world applications.

Table 18. Sensitivity analysis of αR in Eq. (1) on CIFAR-FS.

Hyperparameter 5-way 1-shot 5-way 5-shot

0.1 89.35 96.39
0.01 89.70 96.69

0.001 88.83 95.76

D. Implementation Details of baselines
Here, we provide detailed implementation details for the
baselines used in our paper..

• Fine-tuning baselines. “Full Fine-Tuning” updates
the entire model on the target task via gradient descent.

“Linear probe” only updates the classification head.
“LoRA + Linear [26]” updates the layer-wise rank de-
composition matrices and the classification head. For
fine-tuning, we select the best results from learning
rates [0.1, 0.01, 0.001]. For LoRA, we set the rank to
4.

• Multi-LoRAs composition baselines. “LoRAs Avg”
refers to averaging all given pre-tuned LoRAs into a
single LoRA, which can be further fine-tuned with
the classification head (“LoRAs Avg + Linear”) or
directly make inference via Nearest Neighbour (“Lo-
RAs Avg + NN”) without fine-tuning. “LoRAHub
[33]” takes a further step which obtains a single LoRA
by a weighted sum of given pre-tuned LoRAs, where
the weight values are fine-tuned on the target task.
“MOLE [6]” fine-tunes a learnable gating function to
composing the outputs of different LoRAs. For Lo-
RAHub, we use a gradient-free approach to fine-tune
the coefficients of pre-tuned LoRAs, following the
setup in the original paper. For MOLE, we use gradient
descent to fine-tune the learnable gating function. We
select the best fine-tuning results from learning rates
[0.1, 0.01, 0.001].

• Few-shot adaptation. The current state-of-the-art
baseline, P > M > F [27], performs few-shot adap-
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Figure 7. Visualization of masked synthetic images at varying sparsity levels. (32 → 224) denotes the original training images’ resolution
is 32 × 32 while we can reconstruct images with a higher resolution of 224 × 224.

Original OursCMI

Figure 8. Comparison with SOTA model inversion approach. Our model inversion approach surpasses the current SOTA method CMI [11],
delivering superior image quality with greater efficiency.

pseudo CIFAR-FS pseudo MiniImageNet pseudo Flower-VGG pseudo CUB

Figure 9. T-SNE visualization of synthetic images. Our model inversion approach successfully inverts the essential discriminative features,
which is beneficial to the following meta-learning.

tation by stacking three stages: pre-training, meta-
training, and fine-tuning. We follow the original pa-
per’s setup and apply data augmentation to the support
set of the target tasks. We select the best fine-tuning
results from learning rates [0.1, 0.01, 0.001].

• Fine-tuning-free baselines. “Nearest Neighbour
(NN)” makes predictions based on the label of the clos-
est class center. ”CAML [13]” trains a sequence model
to simulate the in-context learning of LLMs. Since we
do not have real data to train the sequence model, we
use synthetic data generated from pre-tuned LoRAs to
train the sequence model. All other settings are con-

sistent with the original paper.

E. More Discussions
Discussions on the inconsistent performance gains
across various datasets. When we use LoRAs from the
dataset the same as the testing dataset (in-domain setting),
those LoRAs can provide domain-specific priors. This
is particularly useful when the foundation model’s pre-
training dataset varies from the testing dataset. The main
paper’s Tab. 2 confirms this, showing a higher performance
gain on CIFAR-FS (+10.01%) than other datasets (aver-
age +4.98%). The larger disparity between CIFAR-FS and



the pre-training dataset is supported by the baseline NN in
the main paper’s Tab. 2, showing that directly transferring
the foundation model to CIFAR-FS results in a lower ac-
curacy (78.06%) compared to other testing datasets (aver-
age 85.31%). When we use LoRAs from datasets different
from the testing dataset, performance gains across datasets
are relatively stable, since these LoRAs offer limited useful
domain-specific priors for all testing datasets.
Paradigms for Adaptable Foundation Models Several
paradigms have been proposed to make large foundation
models more adaptable. These paradigms involve combi-
nations among Pre-training (P), Meta-learning (M), Fine-
tuning (F) or PEFT, and In-context learning (I). Here, we
provide a discussion over three paradigms, including P>F
or P>PEFT, P>M>F and P>M>I. > indicates the se-
quence. Traditional P>F and P>PEFT [16, 42, 57] often
fail to adapt foundation models to data-limited and real-time
applications due to their need for sufficient data and explicit
fine-tuning.

An emerging strategy, P>M>F, introduces a meta-
learning phase before fine-tuning, preparing the pre-trained
model for subsequent fine-tuning. This paradigm has shown
promising results in vision [5, 27], language [1, 18, 24] and
vision-language [34, 51, 79] domains.

More recently, the P>M>I paradigm has been proposed
in language domains, aiming to acquire more advanced in-
context learning ability of LLMs. For example, LLMs are
equipped with the instruction-following ability by meta-
training on a broad range of tasks accompanied by instruc-
tions [8, 35]. MetaICL [50] and ICT [7] explicitly meta-
train LLMs to learn to learn in context. However, paradigms
for tuning-free adaptation in VFMs are less explored, hin-
dered by their inherent in-context learning limitations.
Difference between domain generalization and our set-
ting. Our setting is fundamentally different from domain
generalization [65] in several key aspects: Domain gener-
alization aims to learn across multiple domains to general-
ize to an unseen domain. It requires that both known and
unseen domains share the same label space. For example,
training domain 1 may include real images of cats and dogs,
and training domain 2 may include animated images of cats
and dogs. Then, the test domain would include paintings of
cats and dogs. Our setting is more challenging, as both the
labels and domains for training and testing tasks differ.

Moreover, the labels in the test tasks are unseen during
training. For example, in our setting, Task 1 might involve
real images of cats and dogs, Task 2 might involve animated
images of tigers and lions, and the test task could involve
paintings of chairs and tables.

Additionally, unlike domain generalization, our setting
emphasizes a few-shot scenario in test tasks and does not
require original data in training tasks.
Discussions on data-free knowledge distillation (DFKD).

Data-Free Knowledge Distillation (DFKD) [12, 28, 47, 55,
59, 60, 66, 76, 82] facilitates the transfer of knowledge from
a large pre-trained teacher model to a smaller, more effi-
cient student model without requiring access to the original
training data. This methodology is particularly significant
in scenarios where privacy or ethical concerns limit data ac-
cessibility. DFKD approaches such as DeepInversion [80]
and CMI [11] synthesize images by utilizing teacher model
statistics and classification objectives, and the synthesized
images are used to perform knowledge transfer. Recently,
ABD [23] investigates potential security vulnerabilities in
DFKD, with a focus on backdoor threats. DFKD techniques
have also been applied to areas such as federated learning
[49] and model quantization [43, 44].

Unlike DFKD, which primarily employs inverted data to
distill knowledge from a single teacher model, our study in-
troduces a meta-learning framework that harnesses inverted
data across multiple teacher models. Moreover, instead of
transferring task-specific knowledge, our framework aims
to learn generalizable prior meta-knowledge [14], which
can be rapidly adapted to new tasks. Lastly, we propose
a double-efficient mechanism that accelerates both the data
inversion and meta-training processes. This contribution
not only speed up our framework but also holds potential
for improving the efficiency in standard DFKD methods.

F. More algorithms
Meta-training stage: LoRA Recycle. We summarize our
proposed LoRA Recycle in Alg. 1.
Meta-testing stage: Tuning-free adaptation with meta-
LoRA (Alg. 2). After meta-training, we obtain meta-trained
meta-LoRA δW ∗. The testing task T = (Ds,Dq) consists
of one support set and one query set. The support set is used
as “context examples” to adapt the VFM f to the specific
task, while the query set is what we actually predict. To
predict the label of each query example Xq ∈ Dq, we first
equip the VFM f with the meta-trained δW ∗ to obtain the
enhanced VFM fδW∗ . Then we feed forward the support
set Ds and the query example Xq into fδW∗ . We directly
output p(Ypred = i|Xq,Ds), the probability of Xq being
classified to label i via Eq. (3b) without fine-tuning. We
assign the label with the max probability as the prediction
result.

Algorithm 2: Tuning-Free Adaptation with Meta-
LoRA

1 INPUT The VFM f . The meta-trained meta-LoRA δW ∗.
The meta-testing task with one support set Ds and one
unlabelled query set Dq.

2 OUTPUT The prediction results on the query set Dq.
3 Equip f with the meta-lora δW ∗

4 Make predictions on Dq based on Ds (Eq. (3b))
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