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A. Additional Model Details
In Table A, we provide the detailed architecture of the

encoder and decoder in the RGB Error-Guided Multiscale
Predictive Coding (EG-MPC) framework.

Component Layer fliter size stride Output size

Encoder

Conv1

3 × 3

(2, 2) 128 × 128 × 32
Conv2 (1, 1) 128 × 128 × 32
Conv3 (2, 2) 64 × 64 × 64
Conv4 (1, 1) 64 × 64 × 64

Decoder

DeConv1 (1, 1) 64 × 64 × 64
DeConv2 (2, 2) 128 × 128 × 32
DeConv3 (1, 1) 128 × 128 × 32
DeConv4 (2, 2) 256 × 256 × 3

Table A. The detailed architecture of the encoder and decoder in
the EG-MPC framework.

B. Additional Ablation Studies and Hyperpa-
rameter Analysis

All experiments in this section are performed on the
single-scene anomaly dataset Avenue [2] and the multi-
scene anomaly dataset ShanghaiTech [3].

B.1. Effectiveness of the loss functions

Our method performs two-stage training for the next-
frame prediction task (Pre-Task) and the predicted-frame
reconstruction task (Rec-Task), respectively. Table B shows
the anomaly detection performance obtained by using dif-
ferent combinations of loss functions during training. The
results indicate that it is advantageous to jointly consider
the structural similarity index measure (SSIM) [5] losses
LSSIM and L′

SSIM on the basis of the conventional predic-
tion loss Lpre and reconstruction loss Lrec. In addition, set-
ting contrastive losses LD1

con and LD2
con for memory items in

two independent dynamic memory modules (DMMs) in the
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reconstruction task can significantly improve the detection
performance, especially for ShanghaiTech dataset where the
behavior and scale of the objects are more complex. This
demonstrates the effectiveness of using contrastive loss [1]
to enhance the discriminability between memory items to
represent diverse normal patterns.

B.2. Impact of the number 𝑁 of memory items in
the DMMs

To investigate the impact of the number 𝑁 of memory
items in the dynamic memory modules (DMMs) on de-
tection performance, we conduct 5 sets of experiments by
varying the value of 𝑁 on the Avenue and ShanghaiTech
datasets. The specific results are displayed in Table C. Ob-
viously, for Avenue and ShanghaiTech, the most appropri-
ate values of 𝑁 are 300 and 500, respectively. In contrast,
either smaller or larger values of 𝑁 lead to suboptimal per-
formance in anomaly detection. This is because when there
are fewer memory items, the diverse normal patterns are dif-
ficult to be expressed effectively, which leads to an increase
in the reconstruction error of normal frames and makes it
prone to the false alarm problem. When there are too many
memory items, the probability of abnormal frames (espe-
cially for the early stages of abnormal occurrence) being
well reconstructed increases, and thus their reconstruction
error decreases, which can lead to miss alarms. Therefore,
it is necessary to determine an appropriate 𝑁 value based
on the size and complexity of the dataset to ensure good
detection performance.

B.3. Impact of the threshold 𝜆𝑤 in the sparse aggre-
gation strategy

In the process of reconstructing each query, we introduce
a threshold 𝜆𝑤 to sparsify the base aggregation weights cor-
responding to each memory item, thus increasing the dif-
ficulty of reconstructing abnormal frames. To explore the
impact of the threshold 𝜆𝑤 on the detection performance,
we conduct 8 sets of experiments by varying the value of
𝜆𝑤 on the Avenue and ShanghaiTech datasets (Note that for



Avenue, 𝑁 = 300 and for ShanghaiTech, 𝑁 = 500.). The
results are presented in Table D. For the experiments on
two datasets, we notice that setting 𝜆𝑤 to 1/𝑁 resulted in
the best detection performance. When 𝜆𝑤 is set to 3/4𝑁 ,
5/4𝑁 , or 3/2𝑁 , the detection performance is still relatively
ideal with a small decrease. However, when the value of
𝜆𝑤 is further reduced (i.e., 𝜆𝑤 = 1/4𝑁 or 1/2𝑁), the base
aggregation weights are less sparsified, which may allow
abnormal frames to be well reconstructed thus leading to
miss alarms. When the value of 𝜆𝑤 is further increased (i.e.,
𝜆𝑤 = 7/4𝑁 or 2/𝑁), the sparsification of the base aggrega-
tion weights is relatively high, which tends to increase the
reconstruction error of the normal frames and thus leads to
false alarms. Overall, it is important to set an appropriate
value of 𝜆𝑤 in the sparse aggregation strategy of memory
items to achieve high performance video anomaly detection.

B.4. Impact of 𝑆self and 𝑆ba in the triggering condi-
tions for the update of memory items during
the testing phase

During the testing phase, we set two triggering condi-
tions for selective update of memory items in the DMMs
to reduce the chance of abnormal patterns being recorded.
Specifically, after a video inference is completed, we se-
lect frames to update the memory items that meet the fol-
lowing two conditions: (1) its anomaly score is lower than
𝑆self , and (2) the anomaly scores of the 20 frames before
and after it are lower than 𝑆ba. To explore the impact of
the anomaly score thresholds 𝑆self and 𝑆ba on the detection
performance, we perform 64 sets of experiments on the Av-
enue and ShanghaiTech datasets by combining different val-
ues of 𝑆self and 𝑆ba. The visualization results are shown in
Fig. A and Fig. B. For the experiments on two datasets, we
note that setting 𝑆self to 0.15 and 𝑆ba to 0.30 resulted in the
best detection performance. Meanwhile, our method still
demonstrates good detection performance when the values
of 𝑆self and 𝑆ba are slightly altered. However, when the
value of either 𝑆self or 𝑆ba is too small or too large, the
performance of anomaly detection decreases significantly.
This is because when 𝑆self or 𝑆ba is too small, there are
few frames selected from the test video for the updating of
memory items, which prevents the dynamic memory mod-
ule from recording diverse normal patterns. When 𝑆self or
𝑆ba is too large, it may result in some abnormal frames being
selected for updating the memory items, which inevitably
has a negative impact on anomaly detection. Therefore, for
the memory item updating process in the testing phase, it is
necessary to set appropriate score thresholds 𝑆self and 𝑆ba
for the triggering conditions to achieve high-performance
anomaly detection.

C. Additional Visualization Results
Figure C, Figure D and Figure E show the anomaly de-

tection results of our method on test instances from the Av-
enue [2], ShanghaiTech [3] and UCF-Crime [4] datasets,
respectively. Firstly, through the presented anomaly score
curves we can observe that:
• Our method is able to respond quickly to various anoma-

lies, and the high score regions match well with the
ground truth anomalies, demonstrating excellent AUC
performance.

• For both normal and abnormal parts of the video, our
method can yield relatively stable anomaly scores with
significant divergence, which indicates that it has good
discriminative ability.
In addition, we visualize the reconstruction RGB error

maps corresponding to some of the ground truths in the fig-
ures, and it can be noted that:
• Our method has noticeable reconstruction errors in the re-

gions where the anomalies occur.
• Our method has a small reconstruction error for normal

background regions, which indicates that it can effec-
tively overcome the interference of background noise.
Especially when dealing with challenging instances in
the ShanghaiTech and UCF-Crime datasets, our method
demonstrates good robustness to complex scene factors
such as small-scale objects, crowded crowds, and dim
light intensity.
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ID
Pre-Task Rec-Task Avenue SHT

Lpre LSSIM Lrec L′

SSIM LD1
con LD2

con AUC Δ𝑆 AUC Δ𝑆

1 - - - - 90.3 0.343 81.1 0.229
2 - - 91.2 0.362 82.7 0.265
3 92.992.992.9 0.4310.4310.431 86.086.086.0 0.3490.3490.349

Table B. The AUC(%) and Δ𝑆 performance obtained by using different combinations of loss functions during training on the Avenue and
ShanghaiTech datasets. The best performing results are marked in bold and highlighted.

Dataset Avenue SHT

𝑁 100 200 300 400 500 300 400 500 600 700

AUC 91.26 92.35 92.9192.9192.91 92.84 92.70 85.07 85.69 86.0286.0286.02 85.93 85.81
Δ𝑆 0.351 0.386 0.4310.4310.431 0.417 0.398 0.296 0.328 0.3490.3490.349 0.344 0.331

Table C. The variation of AUC (%) and Δ𝑆 performance with respect to the number 𝑁 of memory items in the dynamic memory modules
(DMMs) on the Avenue and ShanghaiTech datasets. The best performing results are marked in bold and highlighted.

𝜆𝑤 1/4𝑁 1/2𝑁 3/4𝑁 1/𝑁 5/4𝑁 3/2𝑁 7/4𝑁 2/𝑁

Avenue
AUC 89.7 91.4 92.4 92.992.992.9 92.7 92.3 91.6 90.8
Δ𝑆 0.303 0.364 0.410 0.4310.4310.431 0.418 0.397 0.371 0.334

SHT
AUC 82.3 84.0 85.2 86.086.086.0 85.9 85.6 84.9 84.1
Δ𝑆 0.248 0.295 0.326 0.3490.3490.349 0.337 0.322 0.301 0.274

Table D. The variation of AUC (%) and Δ𝑆 performance with respect to the threshold 𝜆𝑤 in the sparse aggregation strategy on the Avenue
and ShanghaiTech datasets (Note that for Avenue, 𝑁 = 300 and for ShanghaiTech, 𝑁 = 500.). The best performing results are marked in
bold and highlighted.

92.91 

92.42 92.19 

92.34 

92.80 92.13 92.61 

92.77 

92.28 

0.431 

0.424 0.422 

0.417 

0.423 0.408 0.419 

0.426 

0.420 

Figure A. The AUC (%) (left) and Δ𝑆 (right) performance corresponding to different combinations of score thresholds 𝑆self and 𝑆ba on the
Avenue dataset. Specifically, after a video inference is completed, we select frames to update the memory items that meet the following
two conditions: (1) its anomaly score is lower than 𝑆self , and (2) the anomaly scores of the 20 frames before and after it are lower than 𝑆ba.
Best viewed in color.
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Figure B. The AUC (%) (left) and Δ𝑆 (right) performance corresponding to different combinations of score thresholds 𝑆self and 𝑆ba on the
ShanghaiTech dataset. Best viewed in color.
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Figure C. Anomaly detection results of our method on test videos (a) 03, (b) 12 and (c) 13 of the Avenue [2] dataset. For each subfigure
(i.e., (a), (b), and (c)), the reconstruction RGB error maps (where the number denote the sum-square-error of the reconstructed frame
compared to the ground truth), the ground truth (where the abnormal region is marked by the yellow bounding box), and the anomaly score
curve (where the blue highlights represent the true anomalies) are displayed from top to bottom. Best viewed in color. Please enlarge the
PDF for clarity.
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Figure D. Anomaly detection results of our method on test videos (a) 06 0147, (b) 07 0048 and (c) 08 0044 of the ShanghaiTech [3]
dataset. For each subfigure (i.e., (a), (b), and (c)), the reconstruction RGB error maps (where the number denote the sum-square-error of
the reconstructed frame compared to the ground truth), the ground truth (where the abnormal region is marked by the yellow bounding
box), and the anomaly score curve (where the blue highlights represent the true anomalies) are displayed from top to bottom. Best viewed
in color. Please enlarge the PDF for clarity.
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Figure E. Anomaly detection results of our method on test videos (a) 0003, (b) 0004 and (c) 0012 of the UCF-Crime [4] dataset. For each
subfigure (i.e., (a), (b), and (c)), the reconstruction RGB error maps (where the number denote the sum-square-error of the reconstructed
frame compared to the ground truth), the ground truth (where the abnormal region is marked by the yellow bounding box), and the anomaly
score curve (where the blue highlights represent the true anomalies) are displayed from top to bottom. Best viewed in color. Please enlarge
the PDF for clarity.
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