
The Appendix is organized as follows:
• Appendix A: discusses the potential broader impacts of

our work.
• Appendix B: gives the list of abbrevations and symbols

in our paper.
• Appendix C: gives a comprehensive discussion on the

challenge of sparse reward.
• Appendix D: provides more details on implementation

(e.g., experimental resources and hyperpatameters).
• Appendix E: provides pseudo-code of B2-DiffuRL.
• Appendix F: gives an discussion on evaluation metrics,

including comparison between BERTScore and CLIP-
Score, and inception score.

• Appendix G: provides more image samples generated by
the diffusion models fine-tuned with B2-DiffuRL.

• Appendix H: provides the prompt lists used in our exper-
iments.

A. Broader Impacts
Generative models, particularly diffusion models, are pow-
erful productivity tools with significant potential for posi-
tive applications. However, their misuse can lead to unde-
sirable consequences. Our research focuses on improving
the prompt-image alignment of diffusion models, enhanc-
ing their accuracy and usefulness in fields such as medical
image synthesis. While these advancements have clear ben-
efits, they also pose risks, including the creation of false in-
formation that can mislead the public and manipulate public
opinion. Therefore, ensuring reliable detection of synthe-
sized content is crucial to mitigate the potential harm asso-
ciated with generative models.

B. Abbreviation and Symbol Table
The list of important abbreviations and symbols in this pa-
per goes as Table 4.

C. A Comprehensive Discussion on Sparse Re-
wards

𝒙𝒙𝒕𝒕

Predicted
�𝒙𝒙𝟎𝟎

𝑡𝑡 = 20 𝑡𝑡 = 18 𝑡𝑡 = 14 𝑡𝑡 = 10 𝑡𝑡 = 0

Figure 10. (Examples for Predicted x̂0) This figure shows the xt

and predicted x̂0 in the denoising process.

(1) How does the sparse reward make a negative impact
on RL-based diffusion models fine-tuning? The reward is
sparse when we execute RL-based diffusion models fine-
tuning, since only the final image x0 is available to evaluate

the text-image alignment. Previous works such as DDPO
and DPOK have to treat the denoising actions at different
timesteps equally and set rT−1 = rT−2 = ... = r0. How-
ever, we argue that the denoising actions at on different
timesteps have different effects on alignment, and the un-
reasonable reward setting is not conducive to learning. For
example, as shown in Figure 11, the images x1

0, x2
0, and

x3
0 have the same parent node x1

14 but different text-image
alignment scores. The reason for their difference is that dif-
ferent denoising actions a13:1 (instead of a20:14). There-
fore, it is inappropriate to use sparse reward r0 to reward
denoising actions a20:14. Besides, as shown in Table 5, the
differences in alignment results under the same branch are
common, even with a small number of timesteps T = 20.
This reveals the universality of the sparse reward problem.
(2) Why not directly calculate the alignment score of the
predicted x̂0 at each timestep t? Each DDPM or DDIM
denoising step can generate a corresponding predicted x̂0

using xt and the predicted ϵ. However, as shown in Fig-
ure 10, the predicted x̂0 at most denoising steps is unclear.
We do not think that the reward function for final images
can make an accurate evaluation of intermediate images.
(3) How do the proposed BPT and BS strategies help to
mitigate the sparse reward issue? BPT allows diffusion
models to focus on specific training intervals (from τ to 0)
rather than all timesteps (from T to 0). As training pro-
gresses, aτ :1 turn to align better, thus the alignment is more
determined by aT :τ+1, and the final reward is more accurate
for aT :τ+1. That is, BPT helps to assign more appropriate
rewards to denoising actions aT :τ+1. BS samples differ-
ent images from the same parent node xτ and selects the
best one and the worst one to form a contrastive sample
pair. By comparing the contrastive sample pair, BS can pro-
vide more accurate rewards for denoising actions aτ :1, since
the images within the same branch have the same state sτ .
Moreover, since the contrastive samples share high-level vi-
sual semantics such as image style, the models do not learn
to generate images with a specific style. This is why our
proposed strategies preserve higher diversity compared to
naive RL algorithms.

D. Implementation Details
D.1. Implementation of Our Method
Proximal Policy Optimization. Following DDPO, we ap-
ply proximal policy optimization (PPO) algorithm [57], a
commonly used family of policy gradient (PG) algorithm
for reinforcement learning. And we perform importance
sampling pθ(xt−1|xt,c)

pθold
(xt−1|xt,c)

and clipping [57] to implement
PPO.
Extendence of Training Interval. When employing back-
ward progressive training, the training interval will extend
gradually to cover all timesteps of the denoising process. In

Abbreviation/Symbol Meaning

Abbreviations of Concepts
DM Diffusion Model
RL Reinforcement Learning
SD Stable Diffusion
LoRA Low-Rank Adaptation
DDIM Denoising Diffusion Implicit Model
CLIP Contrastive Language-Image Pre-Training
BERT Bidirectional Encoder Representation from Transformers
IS Inception Score

Abbreviations of Approaches
B2-DiffuRL BPT and BS for Reinforcement Learning in Diffusion models
BPT Backward Progressive Training
BS Branch-based Sampling
DDPO Denoising Diffusion Policy Optimization
DPOK Diffusion Policy Optimization with KL regularization
PG Policy Gradient algorithm
DPO Direct Preference Optimization

Symbols of Diffusion Models
x0 Generated image
xt Image with noise at timestep t
c Condition for image generation, also called prompt
θ Parameters of the diffusion model
µθ,Σθ Mean and variance predicted by the diffusion model
N () Gaussian distribution
T Total timesteps
[τ, 1] Training interval from timestep τ to 1

Symbols of Reinforcement Learning
st State at timestep t
at Action at timestep t
πθ Action selection policy parameterized by θ
r() Reward function
r̂() Reward function with normalization

Table 4. List of important abbreviations and symbols.

practice, we use a linear expansion strategy. That is, given
the initial training interval [τ0, 1], the total timesteps T and
total number of training round N , the training interval in
round n is [τ0 + ⌊T−τ0+1

N ⌋, 1].

Reward Normalization. The prompt-image alignment
scores given by CLIP or BERT need to be normalized be-
fore being used as rewards in training. In practice, we com-
pute the mean and variance of the scores for each training
round, with the images generated by the same prompt in
the current round and in the past several rounds. Then the
score can be normalized as score−mean

variance . When computing
mean and variance, we incorporate images from the past
rounds into calculation, because calculation using only im-
ages from one single round may be inaccurate. However,

we only use images from the past few rounds, instead of all
rounds, in the consideration that the scores of images mul-
tiple rounds ago differ greatly from those in current round
as fine-tuning progresses, and are not suitable for estimat-
ing mean and variance of current round. In practice, we use
images from the past 8 training rounds.

Compatibility with Policy Gradient. When applying PG,
the value function V (xτ , c) should be considered. In our
implementation, we replace value function with the reward
normalization mentioned above. What’s more, the impor-
tance sampling pθ(xt−1|xt,c)

pθold
(xt−1|xt,c)

is also applied to improve
stability of training. Therefore, the optimization objective
of PG in our setting is the same as Eq. (6), but without us-
ing the clipping in PPO.

𝑥𝑥20

𝑥𝑥01 𝑥𝑥02 𝑥𝑥03 𝑥𝑥04 𝑥𝑥05 𝑥𝑥06 𝑥𝑥07 𝑥𝑥08 𝑥𝑥09

𝑥𝑥141 𝑥𝑥142 𝑥𝑥143

Good Bad Good Good GoodBad Bad Bad Bad

∼ ℕ(0, 𝐼𝐼)

𝑥𝑥18

Figure 11. (Examples Showing the Problem of Sparse Reward) For these examples, the number of denoising timesteps T is set to 20,
and the prompt is “a bear washing dishes”. The images are denoised from the same x18 with different seeds, and every 3 images are
denoised from the same x14 with different seeds. As we can see, the images denoised from the same parent node x18 or x14 can get
different alignment scores. We can not tell whether x18/x14 is good or bad from one final image. Consequently, it is inappropriate to use
the reward for the last timesteps as the reward for the whole denoising process.

Timestep when Branching 2 4 6 8 10 12 14 16 18 20

Propotion 8.2% 16.8% 15.6% 28.1% 28.9% 34.0% 43.0% 44.5% 52.3% 66.4%

Table 5. (Proportion of branches that contain both well-aligned and poorly-aligned images when branching from different
timesteps) The number of denoising timesteps T is set to 20. We sample 256 branches each time, and each branch contains 3 images. The
differences in alignment results under the same branch are widespread.

Compatibility with DPOK. DPOK also uses value func-
tion and clipping in their implementation. Same with
PG, we replace value function with reward normalization.
Therefore, the gradient of our method when compatible
with DPOK goes as Eq. (7).

E
(τ∑

t=1

[
− α∇θ log pθ(x

+
t−1 | x

+
t , c)r̂

+

+ β∇θKL(pθ(x+
t−1 | x

+
t , c)||pθold(x

+
t−1 | x

+
t , c))

− α∇θ log pθ(x
−
t−1 | x

−
t , c)r̂

−

+ β∇θKL(pθ(x−
t−1 | x

−
t , c)||pθold(x

−
t−1 | x

−
t , c))

])
.

(7)
Compatibility with Direct Preference Optimization. In
contrastive sample pairs, the positive samples are more pre-
ferred than negative samples. Therefore, we can apply di-
rect preference optimization (DPO). The gradient of our
method when compatible with DPO goes as Eq. (8).

−E
(τ∑

t=1

[pθ(x
+
t−1 | x

+
t , c)

pθold(x
+
t−1 | x

+
t , c)

∇θ log pθ(x
+
t−1 | x

+
t , c)

−
pθ(x

−
t−1 | x

−
t , c)

pθold(x
−
t−1 | x

−
t , c)

∇θ log pθ(x
−
t−1 | x

−
t , c)

])
.

(8)

D.2. Discussion on Value Function
A value function V (xt, c) is usually used in policy gradient
training. By subtracting r(x0, c) with V (xt, c), the variance
of gradient estimation can be minimized [17]. However, we
do not employ value function in our implementation.

Branch-based sampling and reward normalization have
the same effect as value function. Since value function is
trained to minimize Epθ(x0:t)(r(x0, c)−V (xt, c))

2, the state
value V (xt, c) approximately equals to the mean score of
the x0s denoised from the given xt. In our approach, re-
ward normalization, as detailed in Appendix D.1, normal-
izes the score/reward using score−mean

variance , similar to the ef-
fect of applying value function (i.e., (r(x0, c) − V (xτ , c)).
Simultaneously, branch-based sampling provides additional
samples denoised from the given xτ , which improves the
estimation of the mean score. Moreover, the contrastive
samples are denoised from the same xτ , with differences in
their rewards reflecting variations in the denoising process
from xτ to x0. By constructing pair-wise contrastive sam-
ples, branch-based sampling (BS) introduces reward signals
that are independent of previous timesteps, helping to esti-
mate the reward of xτ accurately. This is also why apply-
ing BPT+BS consistently outperforms only applying BPT
in our experiments.

Algorithm 1: Pseudo-code of B2-DiffuRL for one training round.
Input : Denoising timesteps T , inner epoch E, number of samples each round N , prompt list C, number of

branches K, training interval [τ, 1], reward function r, pretrained diffusion model pθ
.
pold = deepcopy(pθ) ;
pold.require grad(False) ;
// Sampling
Dsampling = {} ;
for n← 1 to N do

Randomly choose a prompt c from C ;
Randomly choose xT from N (0, I) ;
x(T−1):τ = Denoise with pθ for (T − τ) steps ;
for k ← 1 to K do

xk
τ = deepcopy(xτ) ;

xk
(τ−1):0 =Denoise with pθ for τ steps ;

end
Dsampling.push([x1:K

τ :0 , c]) ;
end
// Evaluation
Dtraining = {} ;
for [x1:K

τ :0 , c] ∈ Dsampling do
s1:K = normalization(r(x1:K

0 , c)) // Do normalization as Appendix D.1
if s1:K contains both negative and positive scores then

i = argmax(s1:K); j = argmin(s1:K) ;
Dtraining.push([xi

t, x
i
t−1, s

i, xj
t , x

j
t−1, s

j , c]t=1:τ) // Contrastive sample pairs
else

i = argmax(abs(s1:K)) ;
Dtraining.push([xi

t, x
i
t−1, s

i, c]t=1:τ) // Simple samples
end

end
// Training
for e← 1 to E do

D = shuffle(Dtraining) ;
with grad ;
for d ∈ D do

d = shuffle(d) ;
if d is a contrastive sample pair then

for [xi
t, x

i
t−1, s

i, xj
t , x

j
t−1, s

j , c] ∈ d do
update θ with gradient descent using Eq. (6) ;

end
else

for [xi
t, x

i
t−1, s

i, c] ∈ d do
update θ with gradient descent using Eq. (4) ;

end
end

end
end

D.3. Computational Cost
In experiments, it takes about 36 hours to reach 50 epochs
using B2-DiffuRL, while DDPO takes about 60 hours.
Computational cost mainly consists of two parts: sampling
and training. In training, for a sample x0, the vanilla train-
ing using RL algorithm needs to traverse the entire denois-
ing process from xT to x0, while the training using BPT
only needs to traverse from xτ to x0, where τ ≤ T . There-
fore, using BPT leads to lower training cost in training.
As for sampling, using branch-based sampling (BS) indeed
leads to higher computational cost. However, sampling is
much faster than training, so B2-DiffuRL requires lower
computational cost overall.

D.4. Experimental Resources
We conducted experiments on 8 24GB NVIDIA 3090
GPUs. It took approximately 36 hours to reach 25.6k re-
ward queries when rewarded by CLIPScore, and approx-
imately 80 hours when rewarded by BERTScore (LLaVA
inference would take much time).

D.5. Hyperparameters
We list hyperparameters of our experiments in Table 6.

Hyperpatameter B2-DiffuRL DDPO

Sampling

Denoising steps T 20 20
Noise Weight η 1.0 1.0
Guidance Scale 5.0 5.0
Batch size 8 8
Batch count 32 32
Number of Branches 3 -

Optimizer

Optimizer AdamW [37] AdamW
Learning rate 1e-4 1e-4
Weight decay 1e-4 1e-4
(β1, β2) (0.9, 0.999) (0.9, 0.999)
ϵ 1e-8 1e-8

Training

Batch size 2 2
Grad. accum. steps 32 128
Initial training interval [14, 1] -
Score threshold 0.5 -

Table 6. Hyperparameters of our experiments.

E. Pseudo-code
The pseudo-code of B2-DiffuRL for one training round
goes as Algorithm 1.

F. Discussion on Evaluation Metrics
F.1. Comparison between BERTScore and CLIP-

Score
We create a dataset containing 768 pairs of similar images
generated by diffusion models with 20 denoising steps. The

-0.01

0.01

0.03

0.05

0.07

0.09

0 0.01 0.02 0.03 0.04 0.05

CLIPScore BERTScore

(a) Distribution of score differences for similar image pairs.

(b) Examples of similar image pairs.

Figure 12. (a) Distribution curve of score differences for similar
image pairs when evaluated by CLIPScore and BERTScore. (b)
Examples of similar image pairs.

two images in the same pair share the same states in the first
19 denoising steps, and only differ in the last denosing step.
Some examples are shown in Figure 12 (b), and we can’t
tell the difference between them with our eyes. But they
are different images, since their file size in JPEG format
are different. Since images in same pairs are visually in-
distinguishable, they should receive similar prompt-image
alignment scores.

However, BERTScores of similar image pairs differ a lot
in our observation. Figure 12 (a) shows the distribution
curves of score differences for similar image pairs, evalu-
ated on CLIPScore and BERTScore. For CLIPScore, we
can observe that almost all similar images have a score dif-
ference of less than 0.01. But for BERTScore, in the interval
where the score difference is greater than 0.01, there are still
many similar image pairs. As we can see from Figure 6 (a),
after fine-tuning the model, BERTScores of the generated
images increase by 0.01-0.03. In consideration of accurate
rewarding and evaluation, it is intolerable that the score dif-
ference of similar images is greater than 0.01. Therefore,
we recommend using CLIPScore as reward function instead
of BERTScore.

F.2. Introduction to Inception Score
Following previous works [2, 4, 7, 73], we use inception
score (IS) as the metric of image diversity. Inception score
is primarily applied as an evaluation metric for GANs [18].
It uses a pretrained inception v3 model [61] to predict the
conditional label distribution P (y | x). Then the inception
score is calculated as detailed in Eq. (9):

IS = exp(Ex(KL(p(y | x)||P (y)))), (9)

where KL is Kullback-Leibler divergence. Traditional In-
ception v3 is trained only on ImageNet [12], while Stable
Diffusion is trained on a large-scale dataset. In real imple-
mentation, in order to better measure the diversity of im-
ages, we replace it by the image encoder of CLIP for calcu-
lating IS. A higher inception score represents better image
diversity.

G. More Samples
In this section, we show more samples generated by the
diffusion models fine-tuned with our method B2-DiffuRL.
Figure 13 shows more samples generated by our method
compared with DDPO, DPO, PG and DPO on templeta 1.
Figure 14 and 15 show more samples from our method on
template 2 and 3 respectively. Figure 16 shows more sam-
ples of generalization to unseen prompts.

In Figure 17, more samples are generated on three given
prompts to show the diversity of different methods. As we
can see, most images generated by DDPO adopt a cartoon-
like style, as described in their paper [8]. Especially for
the images generated on the prompt “a fox riding a bike”,
almost all the background information is lost and becomes
a single color. On the contrary, the images generated by our
method can almost keep the same style as SD, mitigating
the problem of diversity reduction.

SD DDPO Ours+DDPO DPOK Ours+DPOK PG Ours+PG DPO Ours+DPO

“a wolf riding a bike”

“a bird washing dishes”

“a tiger washing dishes”

“a whale riding a bike”

“a frog playing chess”

“a bat playing chess”

“a monkey washing dishes”

“a shark riding a bike”

Figure 13. More samples generated by our method compared with other methods on template 1.

DDPOSD Ours

”green kiwi"

”yellow pineapple"

”green cherry"

”yellow peach"

DDPOSD Ours

“brown banana"

“yellow orange"

"purple plum"

"brown avocado"

DDPOSD Ours

”green strawberry"

“purple blueberry"

”green lime"

”yellow mango"

Figure 14. More samples generated by our method on template 2.

DDPOSD Ours

”wheel on train"

”tower under sky"

”table under vase"

”person on sofa"

DDPOSD Ours

“street under car"

”bowl on the right of plate"

”car on the right of car"

DDPOSD Ours

”person on the left of ball"

“dog on the right of vase"

"suitcase on the left of person"

"grass on the right of road"

”laptop on table"

Figure 15. More samples generated by our method on template 3.

DDPOSD Ours

"a fox washing dishes"

(a) Template 1

“green pineapple"

(b) Template 2

”watch on person"

(c) Template 3

DDPOSD Ours DDPOSD Ours

"a butterfly playing chess" “white pomegranate" ”person behind person"

"a chicken riding a bike" “green orange" ”hydrant behind motorcycle"

"a tiger riding a bike" “brown pear" ”road under wheel"

"a lizard washing dishes" “red plum" ”cat in the front of vase"

"a whale playing chess" “red lettuce" ”road under bus"

"a snake playing chess" “white cabbage" ”motorcycle on the left of car"

"a pig riding a bike" “green banana" ”motorcycle behind person"

Figure 16. More samples of generalization to unseen prompts in template 1, 2 and 3.

DDPO

SD

Ours

"a fox riding a bike"

"a bear washing dishes"

DDPO

SD

Ours

"a pig playing chess"

DDPO

SD

Ours

Figure 17. More samples generated by SD, DDPO and our method on three prompts. The images generated by DDPO tend to adopt a
cartoon style, while those by our method tend to keep original styles of SD. These samples show that our method can help mitigating the
image diversity reduction during fine-tuning.

H. Prompt Lists
In this section, we provide the prompt lists used in our ex-
periments. For each template, we collect one prompt list for
training, and the other one for generalization test, as shown
in Table 7, 8 and 9.

Training list

a cat washing dishes a dog washing dishes a horse washing dishes
a monkey washing dishes a rabbit washing dishes a zebra washing dishes
a spider washing dishes a bird washing dishes a sheep washing dishes
a deer washing dishes a cow washing dishes a goat washing dishes
a lion washing dishes a tiger washing dishes a bear washing dishes

a raccoon riding a bike a fox riding a bike a wolf riding a bike
a lizard riding a bike a beetle riding a bike a ant riding a bike

a butterfly riding a bike a fish riding a bike a shark riding a bike
a whale riding a bike a dolphin riding a bike a squirrel riding a bike
a mouse riding a bike a rat riding a bike a snake riding a bike
a turtle playing chess a frog playing chess a chicken playing chess
a duck playing chess a goose playing chess a bee playing chess
a pig playing chess a turkey playing chess a fly playing chess

a llama playing chess a camel playing chess a bat playing chess
a gorilla playing chess a hedgehog playing chess a kangaroo playing chess

Test list

a cat riding a bike a cat playing chess a dog riding a bike
a dog playing chess a horse riding a bike a horse playing chess

a monkey riding a bike a monkey playing chess a rabbit riding a bike
a rabbit playing chess a zebra riding a bike a zebra playing chess
a spider riding a bike a spider playing chess a bird riding a bike
a bird playing chess a sheep riding a bike a sheep playing chess
a deer riding a bike a deer playing chess a cow riding a bike
a cow playing chess a goat riding a bike a goat playing chess
a lion riding a bike a lion playing chess a tiger riding a bike

a tiger playing chess a bear riding a bike a bear playing chess
a raccoon washing dishes a raccoon playing chess a fox washing dishes

a fox playing chess a wolf washing dishes a wolf playing chess
a lizard washing dishes a lizard playing chess a beetle washing dishes
a beetle playing chess a ant washing dishes a ant playing chess

a butterfly washing dishes a butterfly playing chess a fish washing dishes
a fish playing chess a shark washing dishes a shark playing chess

a whale washing dishes a whale playing chess a dolphin washing dishes
a dolphin playing chess a squirrel washing dishes a squirrel playing chess
a mouse washing dishes a mouse playing chess a rat washing dishes

a rat playing chess a snake washing dishes a snake playing chess
a turtle washing dishes a turtle riding a bike a frog washing dishes

a frog riding a bike a chicken washing dishes a chicken riding a bike
a duck washing dishes a duck riding a bike a goose washing dishes
a goose riding a bike a bee washing dishes a bee riding a bike
a pig washing dishes a pig riding a bike a turkey washing dishes
a turkey riding a bike a fly washing dishes a fly riding a bike

a llama washing dishes a llama riding a bike a camel washing dishes
a camel riding a bike a bat washing dishes a bat riding a bike

a gorilla washing dishes a gorilla riding a bike a hedgehog washing dishes
a hedgehog riding a bike a kangaroo washing dishes a kangaroo riding a bike

Table 7. Prompt Lists for template 1.

Training list

red apple green apple yellow banana
brown banana orange orange yellow orange
red strawberry green strawberry purple grape

green grape red watermelon green watermelon
brown kiwi green kiwi orange mango

yellow mango green pear yellow pear
yellow pineapple brown pineapple orange peach

yellow peach purple plum green plum
blue blueberry purple blueberry red raspberry
green raspberry yellow lemon green lemon

green lime yellow lime green avocado
brown avocado red cherry green cherry

red pomegranate pink pomegranate pink grapefruit
red grapefruit

Test list

yellow apple green banana green orange
white strawberry black grape white watermelon

white kiwi green mango brown pear
green pineapple red peach red plum
black blueberry black raspberry white lemon

white lime yellow avocado black cherry
white pomegranate yellow grapefruit white carrot

white broccoli yellow tomato white cucumber
brown spinach red lettuce yellow bell pepper
white zucchini white sweet potato green onion

green garlic white celery white cabbage
purple cauliflower green eggplant purple asparagus

white peas green corn purple green beans
white brussels sprouts

Table 8. Prompt lists for template 2.

Training list

chair under umbrella table under umbrella car on street
wheel on train airplane on street bag on street
tree under sky building under sky street under sky
dog on boat tower under sky cup on shirt

person on street laptop on table table under laptop
person on sofa glasses on face sofa under person

table under vase street under car dog on the right of vase
building on the right of building suitcase on the left of person dog on the left of person

kite on the right of kite person on the left of ball ball on the right of person
road on the left of grass grass on the right of road person on the left of pillow

bowl on the right of plate building on the right of truck person on the left of bottle
bottle on the right of person box on the left of post building on the left of building

car on the right of car truck on the right of car car on the left of car
person on the left of person

Test list

vase on table shirt on person watch on person
jacket on person motorcycle on road motorcycle behind person

person behind person building behind trees hydrant behind motorcycle
trees behind grass wheel in the front of wheel tower in the front of train

truck in the front of building cat in the front of vase trash can in the front of cabinet
road under bus road under building road under wheel

table under plate person under umbrella cone on the right of cone
car on the right of umbrella phone on the right of monitor person on the right of bear
bear on the right of person bear on the left of person car on the left of bus

motorcycle on the left of bus motorcycle on the left of car road on the left of tree

Table 9. Prompt lists for template 3.

	Broader Impacts
	Abbreviation and Symbol Table
	A Comprehensive Discussion on Sparse Rewards
	Implementation Details
	Implementation of Our Method
	Discussion on Value Function
	Computational Cost
	Experimental Resources
	Hyperparameters

	Pseudo-code
	Discussion on Evaluation Metrics
	Comparison between BERTScore and CLIPScore
	Introduction to Inception Score

	More Samples
	Prompt Lists

