Appendix
A. Calculation on Optimal Transport

In this section, we will provide the optimize details on op-
timal transport. That is, the problem definition of optimal
transport is given as:

min Jor = (7, C)
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To start with, we should first figure out the Lagrange multi-
pliers of optimal transport as:
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where f, g and s denote the Lagrange multipliers. By taking
the differentiation on 7;;, we can obtain the following results

as:
oJ
877”
835> 0

max min J =
f.gs =

(f,a) +

Cij— fi—9gj — sij =
i—fi—g; J (16)

Note that s;; > 0 and s;;7;; = 0 according to the KKT
condition. Therefore, we obtain the dual form of optimal
transport:

max Jor = (f,a) + (g,b)
f.g

st fi+g; < Cij
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Specifically, we can adopt the c-transform via g; =
infreras) (Crj — fx). Meanwhile the optimal transport can
be transformed into the following convex optimization prob-
lem:

N N
Jor = argm?x [; fia; + J; Llerbf;]] (Crj — fk):| b]} (18)

We can adopt commonly-used optimization methods (e.g., L-
BFGS) to obtain the optimal solution on f. After we obtain
the optimal result on f*, we can obtain s accordingly:

sij = Cij — fi — inf (ij = fi) (19)
Since we set a; = b; = N the matchlng results in 7;; can
be obtained as:
il i =0
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B. Proof of Proposition 2

Proposition 2. Given the stochastic differential equations
dzy = f(z¢,t)dt+g(t)dw; with the drift and diffusion terms,

the mean p(t) and covariance 3(t) can be formulated as:

wlt) — E[f(z,1)]
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Proof. To start with, it is noticeable that the mean value of
the diffusion term dw;, is 0. Therefore, it is easy to verify
that d’git) = E[f(z,t)]. Meanwhile, the covariance term
can be figure out as:
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To simplify the first term, we should notice that:

E [(dz(t) — du(t))(2(t) — u(t) "]
=E [(dz(t) — E[f(2,1)] dt)(2(t) —
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To simplify the second term, we also have the results as:
Eld(z — p)d(z — )] = E [(9(t)dw,)(g(t)dwy) "]
= Elg*(t))dt
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Therefore, we have obtain the final solution:

ax(t ) - [(dz( ) - du( D(=(t) - (1)
E[(2(t) — (1)) (d=(t) — dp()T] +E[g*(6)]at
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C. Proof of Proposition 3

Proposition 3. Given the Diverse Stochastic Differential
Equations (DivSDE) as dzy = | — 3= t) xdt+1n 2t = dw;
with the initial data sample zy and the noise level n, the prob-
ability of data distribution z is p(x;) = N ((1—t)z¢, n*t*1)
at the time step t when p(zo) = N (20, 0).

Proof. Adopting the Proposition 2, we can provide the equa-
tions on mean and covariance as below:

W — (1) u

d3(1) 2 21
e <_1—t) (1) + 7

The solutions are given as pu(t) = (1 — t)z; and X(¢) =
n*t%1. O

(26)
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Figure 5. Qualitative results of DSDFM. We present more generated unconditional human motion sequences.
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Figure 6. Qualitative results of DSDFM. We present the diverse human motion sequences under different actions.

D. Experiment Results

D.1. Metric Definitions

In this work, we use the following metrics to measure the per-
formance of the proposed method for unconditional human
motion synthesis and Action-to-Motion tasks.

Frechet Inception Distance (FID). FID calculates the
distribution distance between the generated and real motions.
FID is an important metric widely used to evaluate the overall
quality of generated motions. The FID is calculated as:

FID = ||Mgt ~ Hpred ||2 - Tr(th +Xpred— Z(ZQtEpred) 5 )a

(27)
where ¥ is the covariance matrix. T'r denotes the trace of a
matrix. ftg; and fipreq are the mean of ground-truth motion
features and generated motion features.

Kernel Inception Distance (KID). KID compares skew-
ness as well as the values compared in FID [10], namely
mean and variance. KID is known to work better for small
and medium size datasets.

Precision, Recall. These measures are adopted from
the discriminative domain to the generative domain [36].

Precision measures the probability that a randomly generated
motion falls within the support of the distribution of real
images, and is closely related with fidelity. Recall measures
the probability that a real motion falls within the support of
the distribution of generated images, and is closely related
with diversity.

Accuracy. We use a pre-trained action recognition classi-
fier [9] to classify human motions and calculate the overall
recognition accuracy. The recognition accuracy indicates the
correlation between the motion and its action type.

Diversity. Diversity measures the variance of the gen-
erated motions across all action categories. From a set of
all generated motions from various action types, two sub-
sets of the same size S, are randomly sampled. Their re-
spective sets of motion feature vectors {vy,--- ,vg,} and

{v’l, e ,vsé} are extracted. The diversity of this set of
motions is defined as:

Sa
1
Diversity = 5 Z | vi =il - (28)
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where S; = 200 is used in experiments.
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Figure 7. The qualitative comparison results of the state-of-the-art methods and our proposed DSDFM.

Multimodality. Different from diversity, multimodality
measures how much the generated motions diversify within
each action type. Given a set of motions with C' action types.
For c-th action, we randomly sample two subsets with the
same size S}, and then extract two subsets of feature vectors

{ve1, - ,Ves, } and {V/c,h e ,v’cvsl}.The multimodality
of this motion set is formalized as:
1 c s
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Multimodality = xS ; ; Ve —Veilly- (29

where S; = 20 is used in experiments

D.2. Additional Visualization Results

We provide additional visualization of human motion results
in this section, which consists of the unconditional human

motion synthesis and Action-to-Motion tasks.

Qualitative Analysis on Unconditional Human Motion
Synthesis. Figure 5 visualizes a broader range of uncon-
ditional human motion sequences, effectively highlighting
the remarkable diversity and high fidelity achieved by our
proposed DSDFM. The visualization results demonstrate the
remarkable ability of our method to produce diverse and
realistic human motion sequences in unconditional human
motion synthesis task.

Qualitative Analysis on Action-to-Motion. Figure 6
illustrates diverse human motion sequences across various
action categories, providing evidence that our method is
comparable under different action conditions.

Comparison with Other Methods. We provide more
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Figure 8. Comparison of the training parameter and the correspond-
ing FID metric.

qualitative comparison of the state-of-the-art methods on
human motion synthesis, i.e, unconditional motion genera-
tion and conditional motion generation under action labels
(Action-to-Motion). As shown in Figure 7, we compare
our method with the state-of-the-art methods. Under un-
conditional generation, the visual results of other methods
show that the generated motion sequences tend to converge
to static poses, resulting in a lack of diversity. Under ac-
tion label conditional generation, some methods generate
sequences that fail to meet the semantic requirements. The
comparison results show that our method can achieve more
diverse and accurate human motion sequences. More visual-
ization results of our method can be seen in the supplemen-
tary video. These extensive results indicate that our method
not only enables a significantly faster training process but
also produces motion sequences with greater fidelity.

In addition, we visualize the comparison results of the
training parameter and the corresponding FID metric. As
shown in Figure 8. Our method achieves the best perfor-
mance while utilizing the fewest training parameters. These
results further underscore the effectiveness of the proposed
approach.
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