
3D Gaussian Inpainting with Depth-Guided Cross-View Consistency

Supplementary Material

A. Additional Details of 3DGIC
A.1. Details of Backbone 3D Gaussian Splatting

Model
Given the multi-view images I1:K with corresponding cam-
era poses ξ1:K of a 3D scene, the vanilla 3DGS [5] model pa-
rameterize each Gaussian Gi in G1:N with its 3-dimensional
centroid pi ∈ R3, a 3-dimensional standard deviation
si ∈ R3, a 4-dimensional rotational quaternion qi ∈ R4,
an opacity αi ∈ [0, 1], and color coefficients ci for spherical
harmonics in degree of 3. Hence, Gi is represented with a
set of the above parameters (i.e., Gi = {pi, si,qi, αi, ci}).
However, to make sure the 3DGS models in this paper are ca-
pable of removing Gaussians corresponding to any indicated
object (e.g., “bear” in Figure 2) as described in Sect. 3.3, we
incorporate the use of a semantic-aware 3DGS (i.e., Gaus-
sian Grouping [18]) approach as the main backbone 3DGS
model of our method. Also, since the rendered depth maps
D1:K are utilized as important guidance in our 3DGIC, we
additionally combine the use of Relightable Gaussian [4],
which produces better depth estimations from 3DGS model
as our final backbone for Sect. 3. We now briefly discuss
both methods.

Incorporating Semantic Segmentation via Gaussian
Grouping. To overcome the lack of fine-grained scene
understanding in 3DGS, Gaussian Grouping [18] extends
3DGS by incorporating segmentation capabilities. Along
with I1:K , Gaussian Grouping additionally takes the Seg-
ment Anything Model (SAM) to produce 2D semantic seg-
mentation masks S1:K = {S1, S2, ..., SK} from multiple
views as inputs, and an additional 16-dimensional param-
eter ei ∈ R16 is introduced to represent a 3D Identity En-
coding for each Gaussian Gi. Therefore, each Gaussian
Gi is extended as Gi = {pi, si,qi, αi, ci, ei}. To make
sure G1:K learns to segment each object represented by
S1:K in the scene, a 2D identity loss Lid is applied by
calculating cross-entropy between Ŝ1:K and S1:K , where
Ŝ1:K = {Ŝ1, Ŝ2, ..., SK} denotes the rendered segmenta-
tion maps from G1:K . Additionally, to further ensure that
the Gaussians having the same identities are grouped to-
gether, a 3D regularization loss L3D is applied to enforce
each Gi’s k-nearest 3D spatial neighbors to be close in their
feature distance of Identity Encodings. Please refer to the
original paper [18] for detailed formulations of segmentation
map rendering and L3D. The design of Gaussian Grouping
ensures that the segmentation results are coherent across
multiple views, enabling the automatic generation of binary
masks for any queried object in the scene.

Produce Reliable Depth Estimations with Relightable
Gaussians. Different from Gaussian Grouping, Re-
lightable Gaussians [4] extends the capabilities of Gaussian
Splatting by incorporating Disney-BRDF [2] decomposition
and ray tracing to achieve realistic point cloud relighting.
Unlike traditional Gaussian Splatting, which primarily fo-
cuses on appearance and geometry modeling, Relightable
Gaussians also aim to model the physical interaction of light
with different surfaces in the scene. Specifically, for each
Gaussian Gi, the original color coefficients ci is decom-
posed into a 3-dimensional base color bi ∈ [0, 1]3, a 1-
dimensional roughness r ∈ [0, 1], and incident light coef-
ficients li for spherical harmonics in degree of 3. Subse-
quently, the Physical-Based Rendering (PBR) process and
a point-based ray tracing are applied to obtain the colored
PBR 2D images ÎPBR

1:K and additionally supervised by I1:K .
Besides the above extensions on PBR for relighting, Re-
lightable Gaussians also introduces a 3-dimensional normal
ni for Gi and leverages several techniques, including an
unsupervised estimation of a depth map Di from each input
view ξi, to enhance the geometry accuracy and smoothness.
By conducting this self-supervised estimation and regular-
ization of normal maps and depth maps, the predicted depth
map Di is more reliable than the vanilla 3DGS. Please re-
fer to the original paper of Relightable Gaussians [4] for
detailed explanations.

In conclusion, each Gaussian of our 3DGIC is parame-
terized as Gi = {pi, si,qi, αi, ci, ei,bi, r, li,ni}. By com-
bining these methods, we are able to perform reliable depth
estimations and effective removal of the Gaussians corre-
sponding to any object in the scene for our 3DGIC.

A.2. Additional Details of Inferring Depth-Guided
Inpainting Masks

In Sect. 2.2 in our main paper, we introduce infer proper in-
painting masks M ′

1:K to determine the region to be inpaint by
realizing visible background regions across different views.
In our implementation, after updating the inpainting masks
M ′

1:K with the process described in Sect. 3.2, we further
conduct a refinement for each mask as a post-processing to
prevent noisy mask. Taking M ′

1 as an example, this process
updates M ′

1 as:

M ′
1 ← Open(M ′

1), (1)

where Open(·) represents a morphological opening process
to reduce noises. This refinement process ensures that small
noisy pixels are suppressed in our Depth-Guided Inpainting
Masks.



Figure A1. Qualitative results on the Kitchen scene from the MipNeRF360 [1] dataset. We compare the rendering results with
SPIn-NeRF [9], Gaussian Grouping [18], and GScream [16]. The three rows show different views of the scene. We can see that our 3DGIC
inpaint a smooth kitchen table, while other approaches produce blurry results.

A.3. Additional Details of Initializing Inpainted
Gaussian

In Sect. 3.3, we introduce to remove the Gaussians with
semantic labels corresponding to the “bear” object in G1:N

and replace by the same amount of randomly initialized
Gaussians in the masked region as the initialization of G′

1:N ′ .
We now detail this initialization process for G′

1:N ′ .
When first removing the Gaussians corresponding to the

“bear” object, we directly use the remaining Gaussian to
render the image I ′1 and depth map D′

1. Following the 2D
inpainting process described in Sect. 3.3, the inpainted image
IIn1 and depth map DIn

1 are produced and projected into
3D space as colored point clouds P1. We then use the 3D
coordinates of P1 as the initialized 3D position for the newly
introduced Gaussians for G′

1:N ′ , since P1 represents the ideal
surface of the inpainted 3D Gaussian provided by IIn1 after
removing the bear. Note that if the number of points in P1

does not match the number of newly initialized Gaussians in
G′

1:N ′ (also the number of removed Gaussians in G1:N ), we
apply random selection to the coordinates of P1 to match the
number of the newly introduced Gaussians. As for the other
parameters of the newly introduced Gaussians in G′

1:N ′ , we
follow Gaussian Grouping [18] to average the parameters
of each Gaussian’s 5-nearest neighbors (in 3D space) from
the remaining Gaussians as initialization. By this process,
G′

1:N ′ is properly initialized.

A.4. Implementation Details
In all our experiments, we train one model for each object
category, using a single NVIDIA RTX 3090 GPU (24G) for

training with the PyTorch [10] libraries. For each scene,
5000 iterations of optimization are applied to obtain the
inpainted 3DGS model. We also use the official implemen-
tation of [3, 9, 16, 18] for comparison. When applying 2D
inpainting models to the image and depth map to be inpaint,
if we use non-diffusion-based LAMA [14] as inpainter, the
RGB image and depth map are inpainted separately. How-
ever, if LDM [12] is applied as our 2D inpainters, we follow
the suggestion in NeRFiller [17] to stack the RGB image
and the depth map in the same image for inpainting to ensure
the inpainted RGB image and the depth map are consistent
in terms of the geometry details. Specifically, we crop a
512 × 512 patch for the RGB image and the depth map to
be inpainted center at the pixel coordinate of the inpaint-
ing mask’s center, and paste the cropped RGB patch to a
1024× 1024-resolution black image at the upper right cor-
ner with the cropped depth map at the lower left corner as
the input image for the LDM. Similarly, we also crop a
512× 512 patch for the inpaint masks and put them to the
upper right and lower left corner of another 1024 × 1024-
resolution black image as the input binary inpainting mask
for the LDM. We then use the prompt “an RGB image and a
depth image of the same scene” to inpaint the input image.
Finally, the inpainted RGB patch and the depth map patch
are pasted back to the original image and depth map, respec-
tively, as the 2D inpainting result. It is worth noting that
we apply the 2D inpainting process for every 500 iterations.
Following MALD-NeRF [8], we use the technique of partial
DDIM [13], to start from latter step of the denoising process
as optimization iteration grows. Specifically, for a 50-step



DDIM process, we start from step 0 of the LDM denoising
process for step 0 of our optimization. After 500 iteration
steps, the second time of the LDM inpainting starts from step
5 of the DDIM process and so on. When our optimization
reaches the last 500 iterations, the 2D inpainting process only
denoises using the last five steps of DDIM. This prevents
inpainting results that are too different from the current scene
and provides more stability for our optimization process.

A.5. Dataset Details
For the “figurines” scene from LeRF [6] dataset, we have 260
training frames and 40 testing frames, each with a resolution
of 986× 728. For the “bear” dataset from InNeRF360 [15],
we have 90 training frames and 6 testing frames, each with
a resolution of 985 × 729. As for “counter” and “kitchen”
scenes from MipNeRF360 [1], 240 (230 for training and
10 for testing) and 279 (270 for training and 9 for testing)
frames are available in total, respectively. Both scenes are in
the resolution of 779.

Table A1. Ablation studies on SPIn-NeRF.

FID↓ m-FID↓ LPIPS↓ m-LPIPS↓
Baseline 48.2 125.5 0.32 0.046
w/o Cross-view consistency 43.7 119.4 0.29 0.036
w/o Depth-guided mask 38.8 102.1 0.28 0.035
3DGIC (Ours) 36.4 96.3 0.26 0.028

B. Additional Experiments

B.1. Quantitative Ablation Studies
To verify our designed components, we conduct ablation
studies on the SPIn-NeRF dataset in Table A1. Note that
for the baseline model in this table, the original object mask
(provided by SAM) is used and 2D images from all views
are inpainted as input to fine-tune a 3DGS model. For the
model “w/o Cross-view consistency”, we use our Depth-
guided mask described in Sect. 3.2 to locate regions to be
inpainted but still inpaint all views separately. As for the
model “w/o Depth-guided mask”, we conduct the cross-
view consistent refinement in Sect. 3.3 but take the original
mask as inpainting mask. We can see that without our cross-
view consistent refinement, both FID and LPIPS are much
worse compared to our 3DGIC, especially for FID. This is
because the inpainted results would be blurry and noisy in all
views. On the other hand, without our Depth-guided mask
introduces non-ideal LPIPS score although the FID score in
close to ours. This is because the background regions that
are originally observed from other views are not considered
during the inpainting and therefore the inpainted results are
not consistent to those backgrounds (although looks good
visually). To this end, we have verified the design of our
proposed components.

B.2. Additional Qualitative Results

We additionally show the results on the “kitchen” scene from
the MipNeRF360 [1] dataset in Figure A1. We can see
that SPIn-NeRF produces blurry result, while GScream fail
to handle camera views with a wide range and not able to
remove the excavator clearly. Although Gaussian Grouping
also produces plausible results at the excavator-removed
regions, it incorrectly detects the glove behind the excavator
as region to be inpaint by using the “black blurry hole” as
the prompt for Gounded-SAM [11] to find inpainting masks
and therefore changes the background that should not be
changed (shown in the third view). On the other hand, our
3DGIC locates the proper region to inpaint and produces
smooth and high fidelity results.

C. Limitations
We now discuss the potential limitations of our 3DGIC. Since
our 3DGIC uses the rendered depth map as guidance for the
3D inpainting process, the reliability of the rendered depth
map becomes an important issue. As detailed in Sect. A.1,
we combine the optimization technique introduced in Re-
lightable Gaussians [4] to conduct a self-supervised loss for
the predicted normal map and the rendered depth map to
enhance the accuracy of the rendered depth map. However,
if the input views are too sparse, the rendered depth map
would not be guaranteed to be accurate, which hinders the
inferring of Depth-Guided Mask and the achievement of
cross-view consistency. Another potential limitation of our
3DGIC lies in the capability of the SAM [7] model. As de-
tailed in Sect. A.1, we use SAM to produce 2D segmentation
masks and use these masks as supervision for our backbone
3DGS model so that we don’t have to manually annotate
the 2D object mask of the object to be removed like SPIn-
NeRF [9]. However, if the object to be removed is too small,
the SAM model would confuse it with other objects and not
produce the correct segmentation mask for the object. To
overcome the above limitations, studies on the production of
reliable depth maps for 3DGS models with only sparse input
views and producing a more accurate segmentation mask
for any object would be possible directions to improve the
quality of 3D Gaussian inpainting.

References
[1] Jonathan T Barron, Ben Mildenhall, Dor Verbin, Pratul P

Srinivasan, and Peter Hedman. Mip-nerf 360: Unbounded
anti-aliased neural radiance fields. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), 2022. 2, 3

[2] Brent Burley and Walt Disney Animation Studios. Physically-
based shading at disney. In Acm Siggraph, 2012. 1

[3] Honghua Chen, Chen Change Loy, and Xingang Pan. Mvip-
nerf: Multi-view 3d inpainting on nerf scenes via diffusion
prior. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2024. 2



[4] Jian Gao, Chun Gu, Youtian Lin, Hao Zhu, Xun Cao, Li
Zhang, and Yao Yao. Relightable 3d gaussian: Real-time
point cloud relighting with brdf decomposition and ray trac-
ing. Proceedings of the European Conference on Computer
Vision (ECCV), 2024. 1, 3

[5] Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and
George Drettakis. 3d gaussian splatting for real-time radiance
field rendering. ACM Transactions on Graphics (TOG), 2023.
1

[6] Justin Kerr, Chung Min Kim, Ken Goldberg, Angjoo
Kanazawa, and Matthew Tancik. Lerf: Language embed-
ded radiance fields. In Proceedings of the IEEE International
Conference on Computer Vision (ICCV), 2023. 3

[7] Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao,
Chloe Rolland, Laura Gustafson, Tete Xiao, Spencer White-
head, Alexander C Berg, Wan-Yen Lo, et al. Segment any-
thing. In Proceedings of the IEEE International Conference
on Computer Vision (ICCV), 2023. 3

[8] Chieh Hubert Lin, Changil Kim, Jia-Bin Huang, Qinbo Li,
Chih-Yao Ma, Johannes Kopf, Ming-Hsuan Yang, and Hung-
Yu Tseng. Taming latent diffusion model for neural radiance
field inpainting. Proceedings of the European Conference on
Computer Vision (ECCV), 2024. 2

[9] Ashkan Mirzaei, Tristan Aumentado-Armstrong, Konstanti-
nos G Derpanis, Jonathan Kelly, Marcus A Brubaker, Igor
Gilitschenski, and Alex Levinshtein. Spin-nerf: Multiview
segmentation and perceptual inpainting with neural radiance
fields. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2023. 2, 3

[10] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An
imperative style, high-performance deep learning library. Ad-
vances in neural information processing systems, 32, 2019.
2

[11] Tianhe Ren, Shilong Liu, Ailing Zeng, Jing Lin, Kunchang
Li, He Cao, Jiayu Chen, Xinyu Huang, Yukang Chen, Feng
Yan, et al. Grounded sam: Assembling open-world models
for diverse visual tasks. arXiv preprint arXiv:2401.14159,
2024. 3

[12] Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Björn Ommer. High-resolution image
synthesis with latent diffusion models. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), 2022. 2

[13] Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising
diffusion implicit models. Proceedings of the International
Conference on Learning Representations (ICLR), 2021. 2

[14] Roman Suvorov, Elizaveta Logacheva, Anton Mashikhin,
Anastasia Remizova, Arsenii Ashukha, Aleksei Silvestrov,
Naejin Kong, Harshith Goka, Kiwoong Park, and Victor Lem-
pitsky. Resolution-robust large mask inpainting with fourier
convolutions. In Proceedings of the IEEE Winter Conference
on Applications of Computer Vision (WACV), 2022. 2

[15] Dongqing Wang, Tong Zhang, Alaa Abboud, and Sabine
Süsstrunk. Innerf360: Text-guided 3d-consistent object in-
painting on 360-degree neural radiance fields. In Proceedings

of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2024. 3

[16] Yuxin Wang, Qianyi Wu, Guofeng Zhang, and Dan Xu.
Gscream: Learning 3d geometry and feature consistent gaus-
sian splatting for object removal. Proceedings of the European
Conference on Computer Vision (ECCV), 2024. 2

[17] Ethan Weber, Aleksander Holynski, Varun Jampani, Saurabh
Saxena, Noah Snavely, Abhishek Kar, and Angjoo Kanazawa.
Nerfiller: Completing scenes via generative 3d inpainting. In
Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 20731–20741, 2024. 2

[18] Mingqiao Ye, Martin Danelljan, Fisher Yu, and Lei Ke. Gaus-
sian grouping: Segment and edit anything in 3d scenes. Pro-
ceedings of the European Conference on Computer Vision
(ECCV), 2024. 1, 2


	Additional Details of 3DGIC
	Details of Backbone 3D Gaussian Splatting Model
	Additional Details of Inferring Depth-Guided Inpainting Masks
	Additional Details of Initializing Inpainted Gaussian
	Implementation Details
	Dataset Details

	Additional Experiments
	Quantitative Ablation Studies
	Additional Qualitative Results

	Limitations

