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Abstract

The supplementary materials provide additional insights
into the ADWM proposed in our paper. We present an in-
depth exploration of how our method leverages covariance
matrices and draws connections to PCA, highlighting its
distinctions from prior approaches. Key variables influencing
performance are thoroughly examined. The implementation
approach, datasets, and training details are also provided.
Finally, we present additional experimental results on visual
analysis, comparison with SOTA methods, and the generality
experiment. Code will be provided after acceptance.

A. Analysis on Covariance Matrix and PCA

Many prior works [5, 7, 14] have explored adaptive weight-
ing to enhance feature representation. Our method introduces
two key innovations: 1) leveraging covariance matrix corre-
lations to explicitly capture feature heterogeneity and redun-
dancy; and 2) both IFW and CFW have conceptual links to
PCA, providing stronger theoretical support.

Covariance matrix. Covariance matrices are symmetric,
with off-diagonal elements C;; denoting the covariance be-
tween features ¢ and j. High absolute covariance values
indicate strong linear correlations, while low values suggest
weaker dependencies. In our method, covariance captures
both feature redundancy and heterogeneity. High covariance
often implies redundancy, as features convey overlapping
information. For example, two features strongly correlated
with shared attributes (e.g., brightness or texture) result in
high covariance. In contrast, low covariance reflects hetero-
geneity, where features provide distinct information, such as
spectral properties versus spatial textures. This approach of-
fers a significant advantage over traditional weighting mech-
anisms, which rely on simple global statistics or local opera-
tions and fail to model complex global relationships among
features. By explicitly modeling these relationships using
the covariance matrix, our method inherently incorporates
non-local properties, quantifying the dependencies between
features. As a result, weights are adaptively adjusted to en-
hance features with high heterogeneity, while suppressing
those with high redundancy. This not only reduces redun-
dant information but also significantly improves the overall
informativeness of the feature representations.

Link Between CFW and PCA. In PCA, the eigenvectors
v, represent the principal directions of variation in the data.
Similarly, our CACW generates weights [ that form a basis

to highlight important features and suppress redundancy, pro-
viding a clear and interpretable theoretical foundation. The
relationship between CFW and PCA is particularly notable,
as it parallels PCA’s projection operation, where the original
data matrix X is transformed using the eigenvector matrix
P, formulated as:

Yy = PTX, (1)

where Y represents the reduced-dimensional data. The point-
wise weighting and summation process in CFW can also be
rewritten in a matrix multiplication form, which corresponds
to Eq. (1) in structure. The weighting process in our method
can be formulated as:

F = (softmax(8))T F, (2)

where F' represents the aggregated critical information from
all intermediate results, effectively reducing redundancy and
capturing the essence of the feature space. However, unlike
PCA’s global dimensionality reduction using a fixed orthogo-
nal basis, CFW dynamically learns and applies task-specific
weights 3. This adaptive aggregation tailors feature repre-
sentation to the task, enhancing relevant features and overall
representation.

Link Between IFW and PCA. The IFW also demonstrates
a conceptual link to PCA, though with a key distinction.
Instead of performing a matrix multiplication for dimen-
sionality reduction, IFW employs a channel-wise pointwise
multiplication between the generated weights and the origi-
nal features. The weighting process is formulated as follows:

Fy=F o, 3)
where © denotes element-wise multiplication. Unlike the
global orthogonal projection in PCA represented by Eq. (1),
IFW independently scales each feature dimension through
the generated weights. This can be seen as a simplified form
of projection that preserves the original feature basis while
optimizing the distribution of information. By selectively
amplifying important feature channels and suppressing re-
dundant ones, IFW refines the feature representation without
requiring a global basis transformation.

A.l. Visual Analysis

A.1.1. Intra-Feature Visualization

Change of Covariance Matrix: As shown in Fig. | (a), In
shallower layers, the overall color of the matrix is lighter,
indicating more diverse information across channels, but it
becomes darker with increasing depth, reflecting high redun-
dancy. Additionally, as shown in Fig. 1 (b), the entropy curve
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Figure 1. Visualization of covariance matrices, weights, and feature representations in IFW and CFW. In (a), intra-feature covariance
matrices, channel weights, and corresponding feature maps across various layers are shown, with channels that are multiples of six selected
for clarity. In (b), entropy variations of features across layers are displayed. In (c), cross-feature covariance matrices, layer weights, and
average feature maps across different training epochs are illustrated.

layers, however, the weights show greater variance (0.004
to 0.055), with some channels emphasized and others min-
imized. The smaller weight values in deeper layers reflect
the larger magnitude of deep-layer features. This distribution
enables the model to capture foundational information in the
shallow layers and selectively focus on important structural
details in deeper layers.
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Redundancy Visualization: To further demonstrate that our
- method improves by reducing feature redundancy and en-
0 ! : hancing heterogeneity, we additionally visualized the results
using FusionNet [1] on the WV 3 reduced-resolution dataset.
The analysis is the same as in Sec. 3.4 of the main text.

Figure 2. Scree Plot to illustrate the differences in redundancy. The
smoother the curve, the lower the redundancy.

illustrates the level of information diversity across layers,
with a decreasing trend indicating increased redundancy as
the depth increases.

Changes of Channel Weight: The line charts within the
feature maps illustrate the weights assigned to each chan-
nel. In the shallow layers, the weights are relatively uniform
(0.141 to 0.155), indicating minimal differentiation among
low-level features that do not require emphasis. In deeper

A.1.2. Cross-Feature Visualization

Change of Covariance Matrix: As illustrated in Fig. 1 (c),
The covariance matrix generated by CFW shows significant
evolution over the course of training. In the early epochs,
the blue areas indicate negative correlations between shal-
low and deep features, while the red areas reveal positive
correlations within the shallow and deep features themselves.
Both types of correlations reflect redundancy in the feature
representation. As training progresses, the overall color of
the covariance matrix lightens, reflecting a gradual reduction
in inter-feature correlation. This trend indicates increased
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Figure 3. Illustrations of how our proposed module is integrated
into various methods in a plug-and-play manner. (a) Integration into
LAGNet [6] and LGPNet [16], which share the same framework
but differ in their feature extraction blocks. The unique designs
of the input and output stages are highlighted at the bottom. (b)
Integration into FusionNet [1].

feature diversity and a decline in redundant information as
training advances.

Changes of Layer Weight: As training progresses, layer
weights adjust gradually, indicating the model’s adaptive tun-
ing of each layer’s impact. These shifts reflect the model’s
refinement to align layer contributions with task demands,
enhancing its ability to leverage diverse features and opti-
mize performance throughout learning.

B. Implementation Details of Plug-and-Play

This section demonstrates how our method can be seamlessly
integrated into various existing approaches. Our ADWM
serves as a plug-and-play mechanism. When comparing with
SOTA methods, we incorporated the ADWM module into
the classic LAGNet [6] as our proposed method. To fur-
ther validate the generality of our approach, we integrated
three baseline methods into our ADWM framework: Fu-
sionNet [1] and LGPNet [16]. The U2Net [10] has already
been presented in the main text, Fig. 6. As shown in Fig. 3,
all methods retain their original frameworks, with our dual-
level weighting module integrated only into the intermediate
continuous feature extraction blocks.

C. Datasets

We utilized datasets derived from the WorldView-3 (WV3),
QuickBird (QB), and GaoFen-2 (GF2) satellites for our
experiments. These datasets consist of image patches ex-

tracted from remote sensing imagery, which are separated
into training and testing subsets. The training data includes
image triplets of PAN, LRMS, and GT obtained through
downsampling-based simulation, with respective dimensions
of 64 x 64, 16 x 16 x C, and 64 x 64 x C. For the WV3
dataset, the training set contains approximately 10,000 sam-
ples with eight channels (C' = 8). Similarly, the QB training
set consists of about 17,000 samples with four channels
(C = 4), while the GF2 dataset includes 20,000 samples
with four channels (C' = 4). The reduced-resolution test
set for each satellite is composed of 20 PAN/LRMS/GT im-
age triplets with a variety of representative land cover types.
These images, simulated via downsampling, have dimen-
sions of 256 x 256, 64 x 64 x C', and 256 x 256 x C', respec-
tively. For the full-resolution testing phase, the dataset com-
prises 20 PAN/LRMS image pairs with sizes of 512 x 512
and 128 x 128. The datasets and processing procedures were
obtained from the PanCollection repository [2].

D. Training Details

When comparing with SOTA methods, the training of
ADWM on the WV3 dataset was conducted using the ¢;
loss function and the Adam optimizer. The batch size was
set to 64, with an initial learning rate of 2 x 1073, decay-
ing to half its value every 150 steps. The training process
spanned 500 epochs. The network architecture used 48 chan-
nels in the hidden layers, and the intermediate layer size d
in CACW was set to 0.8n. For the QB dataset, the training
process lasted 200 epochs, with the intermediate layer size
d in CACW set to 0.6n, while all other settings remained
consistent with those used for the WV3 dataset. For the GF2
dataset, all settings were identical to the WV3 configuration.
In general experiments, all other training settings followed
those specified in the original papers.

E. Additional Results

Visual Analysis: To provide a more detailed illustration
of the channel weights generated in IFW, we present the
complete results of the first and sixth layers on one picture of
GF?2 reduced-resolution datasets, including all feature maps
and their corresponding weights for each channel, as shown
in Fig. 4.

Comparison with SOTA methods: Tab. | showcases a com-
prehensive comparison of our method with state-of-the-art
approaches across three datasets on full-resolution images.
The HQNR metric [13], which improves upon the QNR met-
ric, evaluates both spatial and spectral consistency, offering
a comprehensive reflection of the image-fusion effectiveness
of different methods. It is widely regarded as one of the most
important metrics for full-resolution datasets. Our method
achieves the highest HQNR on all three datasets. Addition-
ally, in Figs. 5 to 9, we provide visual comparisons of the



Table 1. Comparisons on WV3, QB, and GF2 full-resolution datasets, each with 20 samples. Best: bold, and second-best: underline.

WV3 QB GF2
Methods
D,| Ds; | HQNRT D, | D;| HQNRT D, | D] HQNR?T

MTF-GLP-FS [12] 0.020 0.063 0.919 0.047 0.150 0.810 0.0350.143 0.828
BDSD-PC [11] 0.063 0.073 0.870 0.198 0.164 0.672 0.076 0.155 0.781
TV [9] 0.023 0.039 0.938 0.055 0.100 0.850 0.055 0.112 0.839
PNN [8] 0.021 0.043 0.937 0.058 0.062 0.884 0.032 0.094 0.877
PanNet [15] 0.017 0.047 0.937 0.043 0.114 0.849 0.018 0.080 0.904
DiCNN [3] 0.036 0.046 0.920 0.095 0.107 0.809 0.037 0.099 0.868
FusionNet [1] 0.024 0.037 0.940 0.057 0.052 0.894 0.035 0.101 0.867
LAGNet [6] 0.037 0.042 0.923 0.086 0.068 0.852 0.028 0.079 0.895
LGPNet [16] 0.022 0.039 0.940 0.074 0.061 0.870 0.030 0.080 0.892
PanMamba [4] 0.018 0.053 0.930 0.049 0.044 0.910 0.023 0.057 0.921
Proposed 0.024 0.029 0.948 0.064 0.024 0.914 0.022 0.052 0.928

Table 2. Comparisons on WV3, QB, and GF2 datasets with 20 reduce-resolution samples, respectively. Methods marked with * represent the
corresponding method enhanced with our ADWM module without any further changes. The best results in each column are bolded.

Method WV3 QB GF2
PSNRT SAM| ERGAS| Q81 PSNRT SAM| ERGAS| Q41 PSNR{ SAM| ERGAS| Q41
FusionNet [1] 38.047 3.324 2465 0904 37.540 4.904 4.156 0.925 39.639 0974 0988 0.964
FusionNet* 38.679 3.097 2249 0.909 38.271 4.654 3.795 0.933 41.649 0.832 0769 0.975
LGPNet [16] 38.147 3270 2422 0902 36443 4954 4777 0915 41.843 0845 0.765 0976
LGPNet* 38.400 3241 2330 0902 38309 4.666 3.773 0932 42230 0.828 0.714 0.978
U2Net [10] 39.117 2.888 2.149 0920 38.065 4.642 3.987 0931 43379 0714 0632 0981
U2Net* 39234 2.864 2143 0922 38.762 4.432 3.691 0939 43901 0.670 0.592 0.986

outputs generated by various methods on sample images
from the WV3, QB, and GF2 datasets.

Generality Experiment: Tab. 2 presents the results of the
generality experiment conducted across three datasets on
reduced-resolution images. In Figs. 10 to 14, we showcase
visual output comparisons for some methods before and after
incorporating our ADWM module, using sample images
from the WV3, QB, and GF2 datasets.
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Figure 4. Channel weights and corresponding feature maps in IFW: (a) Results from the first layer, where each feature map is annotated with
its corresponding weight. (b) Results from the sixth layer.
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Figure 5. The residuals (Top) and visual results (bottom) of all compared approaches on the QB reduced-resolution dataset.
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Figure 6. The residuals (Top) and visual results (bottom) of all compared approaches on the WV3 reduced-resolution dataset.
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Figure 7. The HQNR maps (Top) and visual results (bottom) of all compared approaches on the GF2 full-resolution dataset.
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Figure 8. The HQNR maps (Top) and visual results (bottom) of all compared approaches on the QB full-resolution dataset.
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Figure 9. The HQNR maps (Top) and visual results (bottom) of all compared approaches on the WV3 full-resolution dataset.
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Figure 10. The residuals (Top) and visual results (Bottom) of all evaluated general methods on the GF2 reduced-resolution dataset.
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Figure 11. The residuals (Top) and visual results (Bottom) of all evaluated general methods on the QB reduced-resolution dataset.
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Figure 12. The residuals (Top) and visual results (Bottom) of all evaluated general methods on the WV3 reduced-resolution dataset.
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Figure 13. The visual results (Top) and HQNR maps (Bottom) of all evaluated general methods on the GF2 full-resolution dataset.
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Figure 14. The visual results (Top) and HQNR maps (Bottom) of all evaluated general methods on the QB full-resolution dataset.
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