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A. Orthogonality proof

This proof supports the analysis presented in Section 3.3.2,
specifically Equation 14, where the regulation term Pﬁl;b
involves gradients g}, from multiple batches. The analysis
assumes that, due to the high dimensionality of the space,
the gradients g}, from different batches are nearly orthogo-
nal. Here, we formally prove this assumption by showing
that random vectors sampled from the surface of a high-
dimensional hypersphere are nearly orthogonal with high
probability.

Lemma 1. In high-dimensional spaces, let gi, gt € R"
be two random vectors uniformly sampled from the surface
of an n-dimensional hypersphere with magnitudes ||gt| =
aand ||gt|| = b. As n — oo, these vectors are nearly or-
thogonal with high probability. Specifically, their dot prod-
uct satisfies:

gl gl =abcosf ~ 0. a7

Proof of Lemma 1. Let g’ and g}, be two random vectors
in R™ with magnitudes ||g’| = a and ||g},|| = b. The dot
product is given by:

gl - gl = abcosd. (18)

To analyze the distribution of the angle 6 in high-
dimensional space, we consider the geometry of the n-
dimensional unit hypersphere. Any vector x € R" with
unit norm, i.e., ||x||2 = 1, lies on the surface of the unit hy-
persphere. It can be parameterized in spherical coordinates
as:
n
x = (z1,%2,...,2,), wWherez; € R, Z:rf =1. (19)

i=1
The components of x in spherical coordinates are:

T1 = Ccos @,
To = sin ¢ cos ¢a,
T3 = sin ¢ sin ¢s cos @3,

(20)

n—1

Tp = H sin ¢i7

=1

where ¢1,¢a, ..., ¢n_2 € [0,7], and ¢,,_1 € [0,27]. The
surface element of the hypersphere is:

dS = (sin )" (sin )" "3 - - - sin ¢pp_o dp1dps - - dpp_1.

2D
Without loss of generality, let one vector g’ be fixed along
the z;-axis, g! = (a,0,...,0). The second vector g!. can

be parameterized using spherical coordinates. The angle 6
between g! and g! is the same as ¢1, the first coordinate
angle, so:

cos ¢ = cosf. 22)

The relevant term in the hypersphere surface element is:

Pn(1) o (singp)" 2. (23)

This shows that the probability density of ¢; (or 6) depends
on the sine function raised to the power of (n — 2). For
large n, (sin ¢1)™ 2 is sharply concentrated around ¢; =
7/2 because sin ¢; reaches its maximum at 7/2. As n —
oo, this concentration becomes stronger, leading to ¢; ~ 3
with high probability. Since ¢1 = 7/2, we have:

cos ¢y = cosf =~ 0. 24)

Thus, in high-dimensional spaces, the angle € between two
random vectors concentrates around 7 /2, leading to:

gl gl =abcosf ~ 0. (25)

This demonstrates that the vectors are nearly orthogonal as
n — oo.

B. Gradient norm analysis

This section aims to demonstrate that the regulation term
Pt ., introduced to regulate the information-sufficient
modalities during the prime learning window, does not hin-
der the convergence of the optimization process. Specif-
ically, we analyze the gradient norm and show that, un-
der proper parameter settings, the convergence rate remains
consistent with that of the original optimization objective

without the regulation term.

Lemma 2. At training epoch ¢ and batch b, consider the
optimization objective:

‘C(wfn;b) = ‘CJOint(wfrz;b) + an;b’ (26)



where L;oint(w?, ;) is the multimodal joint loss function,
and the regulation term P, . 18 defined as:

*2 b
t an Z
Pfj;r,;b = 2 ||glt<H2
k=0

Here, o > 0 is the regularization coefficient, n > 0 is
the learning rate, and g} denotes the gradient of batch k
at epoch ¢. If o and 7 are sufficiently small, the conver-
gence rate remains of the same order as without the regula-
tion term.

27

Proof of Lemma 2. During the training, the weight up-
date rule is given by:

wfn;b+1 m ;b WVE( Wy, b) (28)
where:

VL(Wh.p) = VLjoint(Whyp) + VP, 29

The gradient of the regulation term an , 18 given by:

b
VP =on’)_gp. (30)
k=0
Assuming that £(w) is L-Lipschitz smooth, we have:
t T, t t
E(wm;bJrl) < ‘C( Wy, b) + V‘C’( m b) (wm;b+1 - wm;b)
+ §|‘w7t“n;b+l - wz:n;bHQ'

(3D

Substituting w!, ;. — w}, ., = —nVL(w},,), we obtain:

L(winpi1) < Llwpn) =0l VL (wy,y) |12 L HVli( W)l
(32)
The gradient norm is expressed as:
VL)1 = 1V Lioint (W) |
+2vPE b Vﬁjomt( wh ) (33)

+IVPLl2

Due to the high dimensionality of the space, as demon-
strated in Section A, the regulation term gradient VP;;;b
and the joint loss gradient Vﬁjomt(wﬁmb) are nearly or-
thogonal. As a result, their dot product can be approximated
as:

VP VLjoint(Why) ~ 0. (34)
The gradient of the regulation term is bounded as:
b
IVPL Il =an® Y gkl < an’G, (39
k=0

where G is the upper bound of the gradient norm ||gt ||.
Thus, the term satisfies:
IVL(wp )P < 1V Lioint (winp)|I* + oG (36)
For sufficiently small « and 7, the additional term
2n*b?G? becomes negligible. Therefore, the convergence

rate remains of the same order as without Pm b

C. Supplementary t-SNE analysis

(a) InfoReg*. (b) Joint training.

(c) Joint training*. (d) Extended Joint training*.

Figure 9. The representations of the video modality on CREMA-D
by t-SNE [39] across different methods are shown. InfoReg* and
Joint training* denote InfoReg and Joint training with unimodal
loss respectively. "Extended Joint training*" denotes Joint train-
ing* that is extended to 100 epochs.

To provide a more comprehensive evaluation of the pro-
posed InfoReg method, we extend our analysis by incor-
porating t-SNE visualizations of video modality representa-
tions for InfoReg* and Joint training* on the CREMA-D
dataset. Here, InfoReg* denotes InfoReg with unimodal
loss, and Joint training® denotes Joint training with uni-
modal loss. As shown in Figure 9, InfoReg* and Joint train-
ing* learn better representations than Joint training. This is
because the unimodal loss helps the multimodal model ac-
quire more information. Additionally, the features learned
by Joint training* and Extended Joint training* are simi-
lar, as shown in Figure 9c and Figure 9d. This indicates
that extending the training time cannot compensate for the
lack of information acquired during the prime learning win-
dow. Furthermore, InfoReg* learns better representations
than both Joint training* and Extended Joint training*. This
demonstrates that, with unimodal loss, our method can still
help information-insufficient modalities acquire more infor-
mation in the prime learning window. As a result, InfoReg*
learns better representation.



D. Supplementary experiments
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Figure 10. Violence Flow dataset example, showcasing video
modality dominance.

Dataset Violence Flow Hateful Memes
Joint training 89.21 55.00
InfoReg 90.56 56.20

Table 7. Accuracy comparison.

To further evaluate the effectiveness of InfoReg under
diverse dataset conditions, we conducted experiments on
the Violence Flow [14] and Hateful Memes [25] datasets.
These datasets present different challenges: Violence Flow
emphasizes anomaly detection, where the video modality
quickly becomes dominant, while Hateful Memes requires
cooperation between modalities due to its complex multi-
modal nature.

Figure 10 illustrates the information amount during
training on the Violence Flow, where the video modality
demonstrates dominance during the prime learning window.
InfoReg can identify this dominant modality.

The Hateful Memes dataset requires significant cooper-
ation between modalities. As shown in the Table 7, Despite
the increased complexity, InfoReg can still improve the per-
foremance of the model.



