
ArcPro: Architectural Programs for Structured 3D Abstraction of Sparse Points
(Supplementary Material)

Qirui Huang1,2, Runze Zhang1, Kangjun Liu2, Minglun Gong3, Hao Zhang4, Hui Huang1*

1CSSE, Shenzhen University 2Pengcheng Laboratory 3University of Guelph 4Simon Fraser University

This supplementary material primarily includes imple-
mentation details, additional experiments and application
results, as well as the motivation behind DSL.

A. Experiments
Network structures. The point cloud encoder is a
ResNet-style architecture built with sparse 3D convolutions.
It processes voxelized point clouds of size 1283 and pro-
gressively reduces the spatial resolution through five stages,
each consisting of residual blocks with sparse convolutions.
The network begins with a basic sparse convolutional block
and follows a structure where feature dimensions increase
across stages: [64, 128, 192, 384, 512]. Each stage employs
two residual blocks, with downsampling implemented using
sparse max pooling. The encoded output is compressed into
a R512 feature representation, corresponding to a spatial res-
olution of 43. The program decoder is a classical trans-
former with 12 layers, each featuring 8 attention heads, a
model dimension dmodel = 512, and a feed-forward dimen-
sion dff = 2048. The encoded point cloud features are in-
corporated into the program decoder via cross-attention, en-
abling effective conditional program generation that aligns
with the input point cloud.

Training details. The input point cloud is normalized to
fit within a unit cube [−0.5, 0.5] by centering and scaling
its coordinates based on the data’s range. For tokenization,
numerical values such as coordinates or height values are
discretized within the range [−1,+1]. This range is divided
into intervals with a resolution of 0.02, resulting in 100 dis-
tinct numeric tokens to represent the corresponding discrete
values. We use a label smoothing strategy: non-numeric
tokens have a ground truth probability of 0.95, with 0.05
distributed evenly among others; numeric tokens have 0.5,
with 0.25 assigned to adjacent tokens to reflect their contin-
uous nature for better optimization.

Ablation study. See Table 1. For data augmentation, both
noise scale and incomplete ratio should be moderate: if

*Corresponding author

Table 1. Ablation study for training configuration.
Noise
Scale

Incomplete
Ratio

⟨/p⟩, ⟨/h⟩
Token

SfM Sparse Sampling

HD (↓) LFD (↓) HD (↓) LFD (↓)

0 0.0195 4192 0.0291 5387
0.05 0.0177 4338 0.0237 4958

0% 0.0169 4210 0.0250 5033
[50%, 90%] 0.0187 4396 0.0266 5211

w/o 0.0181 4259 0.0272 5212

0.02 [10%, 50%] w/ 0.0154 3873 0.0219 4932

Figure 1. Generalization. Table 2. Robust to data ratio.
Training data

(4-gon : 6-gon)
4-gon 6-gon

#n HD #n HD

20% : 80% 4.07 0.0089 5.95 0.0085
50% : 50% 4.03 0.0091 5.94 0.0089
80% : 20% 4.04 0.0087 5.95 0.0090

too weak, they fail to adequately simulate the low-quality
nature of real point clouds; if too strong, the problem be-
comes overly ill-posed, degrading performance and desta-
bilizing training. For token schema, we use ⟨/p⟩ and ⟨/h⟩ as
end tokens for point coordinates and height values, respec-
tively. While parsing works without them, they improve
performance and stabilize training. For geometry refine-
ment, omitting it during inference has little impact on the
metrics but noticeably degrades visualization due to slight
misalignment of points and lines.

Generalizability and robustness. Our goal is to learn
conditional mapping from input point clouds, where do-
main shifts between synthetic and real data can be mitigated
since the input provides a contextual hint during inference.
We cannot retrieve the most similar shape from the train-
ing set due to online data synthesis, but Figure 1 shows that
our method can infer unsynthesized or unseen shapes. Ac-
cording to our procedural rules (see Sec 4.2), when M > 1,
each edge should lie on the extension of a parent edge, but
this is not satisfied in Figure 1 above. We also explored ro-
bustness against varying data ratios by preparing two test
sets (4-gon and 6-gon) and three training sets with different
mixing ratios; see Table 2.

1



Additional illustrations. We present examples of pro-
cedurally generated synthetic training data, as illustrated
in Figure 3. These are generated online during train-
ing, including six types of architectural tree models, which
are sampled based on specific proportions. More results
of our method applied to Structure-from-Motion (SfM)
point clouds and sparse sampling point clouds are pro-
vided, as shown in Figure 4. Furthermore, we examine the
performance of RANSAC plane detection on low-quality
point clouds derived from the experimental section of the
main paper. As shown in Figure 5, these results reveal
RANSAC’s struggles with sparse point clouds, causing tra-
ditional methods to fail. Finally, we present user study ex-
amples comparing our method to alternative approaches.
These examples are shown in Figures 9, 10, and 11.

B. Applications
Multi-view aerial images. We extend our framework to
process raw SfM point clouds from multi-view aerial im-
ages, bypassing building segmentation. This introduces
noise like ground points and outliers. To mitigate this, we
augment data by expanding a building’s footprint’s con-
vex hull or bounding box to simulate ground and adding
noise to represent trees, cars, and other elements. This
allows us to more effectively process unsegmented SfM
point clouds. Compared to traditional MVS methods, Ar-
cPro significantly improves inference speed while produc-
ing lightweight, textured 3D abstractions, as shown in Fig-
ure 6. ArcPro takes 0.034s on an RTX 4090 GPU, compared
to 739s for the traditional MVS pipeline (using the commer-
cial software ContextCapture), achieving a 10,000x reduc-
tion in time and data size (#V for vertices, #F for triangular
faces). This allows faster processing, lower rendering costs,
and more efficient data transfer and storage, which is critical
for spatial computing applications.

Natural language retrieval. Our method encodes archi-
tectural structures as programs, leveraging their linguistic
properties for natural language-driven analysis and retrieval
using large language models prompt by DSL definition. Ar-
cPro transforms a database of 3D architectural models into
corresponding programmatic representations, establishing
connections between programs and 3D models. For exam-
ple, as shown in Figure 7, given a query like “two-layer
buildings where the second layer is higher than the first,”
a language model such as ChatGPT will generate Python
code for an IsMatching(program) function based on
the DSL definition, implementing the logic to verify each
program. The function returns True for programs meeting
the criteria and False otherwise, enabling the retrieval of
relevant 3D architectural models effectively.

LiDAR point clouds. We also explore the performance
of ArcPro on LiDAR point cloud input, using data from the

Figure 2. The examples of non-planar surfaces in the current and
extended ArcPro framework.

DublinCity dataset [1], as shown in Figure 8. Even without
incorporating specific design in data augmentation to simu-
late the characteristics of LiDAR point clouds, our method
is still able to achieve reasonable performance.

Non-planar surfaces. As our work primarily focuses on
recovering planar surfaces, curved surfaces, such as the one
shown in Fig. 2 left, need to be approximated by polygonal
contours. Extending our framework to handle non-planar
contours is quite straightforward. By distinguishing curve
points from corner points at the token level (marked in pur-
ple or blue), the geometry compiler can fit curve segments
as parametric curves. We synthesize corresponding train-
ing data to obtain preliminary results shown in Fig. 2 right,
highlighting the potential of our program framework.

C. Motivation of DSL
We design our DSL to align with architectural priors and be
syntactically compatible with traditional procedural build-
ing generation (PBG), instead of using a more general shape
language. This approach offers these advantages:
• More compact representation with a more efficient so-

lution space. For example, unlike sketch-and-extrude,
which requires six DoF (origin and orientation), our ap-
proach employs a parent layer index to simultaneously
specify the 3D coordinate frame and layer hierarchy.

• Leveraging mature PBG research for large-scale training
data synthesis, where architectural priors can be injected.

• Extensibility to accommodate new statements that support
additional architectural features, such as roof structures
from OpenStreetMap (OSM) or for-loops for repetitive
elements like windows in façade modeling.

• Explicit encoding of building properties, such as hierar-
chical relationships in CreateLayer statements, facil-
itating language-based retrieval and analysis.

• Editability through parametric modeling and the relation
of geometric elements align with architectural features.

References
[1] SM Zolanvari, Susana Ruano, Aakanksha Rana, Alan Cum-

mins, Rogerio Eduardo Da Silva, Morteza Rahbar, and Aljosa
Smolic. Dublincity: Annotated lidar point cloud and its appli-
cations. arXiv preprint arXiv:1909.03613, 2019. 2



Figure 3. Synthetic training data by procedural generation. The bottom row shows six architecture tree modes and their sampling ratios.



Figure 4. More results of our method applied to Structure-from-Motion (SfM) point clouds and sparse sampling point clouds. Our method
can recover structured 3D abstractions from low-quality architectural point clouds that are non-uniform, incomplete, and noisy.



Figure 5. RANSAC plane detection results on the input from Figure 5 in the main paper. The results demonstrate that RANSAC struggles
with diverse and low-quality architecture point clouds, leading to the failure of traditional methods that rely on RANSAC.

Figure 6. The result processes raw SfM point clouds from multi-view aerial images, bypassing building segmentation. Compared to
traditional MVS methods, ArcPro significantly enhances inference speed while generating lightweight, textured 3D abstractions.



Figure 7. Architecture geometry structure analysis and natural language retrieval. Prompting ChatGPT with DSL definitions to convert
geometric structure queries into Python code IsMatching(program) to vertify each program for retrieving matching programs.

Figure 8. Results with LiDAR point clouds. Without specialized data augmentation, our method achieved reasonable performance.



Figure 9. The user study examples comparing our method to other methods.



Figure 10. The user study examples comparing our method to other methods.



Figure 11. The user study examples comparing our method to other methods.


	. Experiments
	. Applications
	. Motivation of DSL

