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Supplementary Material

In this appendix, we report additional details on Video-
MindPalace, the Video MindPalace Benchmark (VMB), ad-
ditional results and visualizations. In section 7, we include
more visualizations of both queries and qualitative results
across different kinds of questions in VMB. We then give
more information on the graph construction for VideoMind-
Palace and how we prompt VideoMindPalace to obtain the
answers for the questions in VMB in section 8. Next, in
section 9, we present additional ablations for VideoMind-
Palace. Finally, we further detail VMB in section 10.

7. More qualitative results

Video graph representation visualization In the fig-
ure 4, we present a graph-based visualization of a 30-second
video using our Video MindPalace framework, structured
into three conceptual layers. The first layer maps humans
and detected objects as nodes, with edges illustrating their
interactions and movement over time and space. The second
layer defines key activity zones, connecting them through
edges that reflect their three-dimensional spatial configura-
tion. The third layer outlines the broader scene structure,
where node represent individual room.

Video reasoning visualization In the figure 5, we
showcase additional examples of VideoMindPalace’s rea-
soning capabilities across various question types. For each
question type, we provide a representative example. To
illustrate how VideoMindPalace effectively answer these
questions, we utilize GPT-4 to identify specific segments of
the graph containing the necessary information for accurate
inference using the following prompt: ‘‘You are
an expert in analyzing semantic graphs
generated from video content. In the
following graph, nodes capture spatial
concepts (e.g., objects, activity
zones, rooms), and edges signify
spatiotemporal, layout relationships
and human-object interaction. Given
a query, your task is to identify
specific segments of the graph that
provide sufficient information to
answer the query accurately. Input:
1. Constructed graph: [...], 2.
Query and options: [...].’’

8. More graph construction details
8.1. Prompt design of zero-shot video QA
We employ the following prompts to extract critical
information from the constructed graph for zero-shot video
question answering tasks: 1. For Multiple-Choice Video
QA: ‘‘You are an expert at reasoning
with semantic graphs to analyze video
content. In the following graph,
nodes capture spatial concepts (e.g.,
objects, activity zones, rooms),
and edges signify spatiotemporal,
layout relationships and human-object
interaction. Your task is to answer
a query based on the provided graph
by selecting the correct answer from
given options. Input: 1. Constructed
graph: [...], 2. Query and options:
[...]. Task: Analyze the graph
and determine which option correctly
answers the query. Provide only the
correct answer (e.g.,‘‘A’’) without
additional explanations.’’. 2. For open-
ended video QA: ‘‘You are an expert in
analyzing video content to summarize
human actions and activities. In the
following graph, nodes capture spatial
concepts (e.g., objects, activity
zones, rooms), and edges signify
spatiotemporal, layout relationships
and human-object interaction. Your
task is to extract and describe
fine-grained actions, transitions, and
spatial sequences performed by a person
in the video. The summary should
provide a coherent and detailed account
of the activity flow, highlighting both
actions and their relationships to
the environment. Input: Constructed
graph: [...].’’.

8.2. Graph construction heuristic
Layer 1 - Human and Object: we consider u and v represent
two entities in the scene, such as a human or an object. Each
detected object is assigned a unique identifier, denoted as
IDu, and categorized with a semantic label Cu. The spatial
location of an object in frame t is represented by its bound-



Figure 4. We visualize the graph representation of a 30-second video using our Video MindPalace, which organizes information across
three semantic layers. Layer 1 captures the human and detected objects as nodes, with edges representing their spatiotemporal interactions.
Layer 2 abstracts the scene into activity zones, where nodes represent distinct areas of activity and edges encode their spatial relationships
in 3D space.

ing box Bu(t) = (xmin, ymin, xmax, ymax). Between the two
nodes Nu and Nv , three types of edges are defined, each
capturing a specific relationship. The first type, the Inter-
action Type Edge (Iuv), encodes the predicted interaction
type between u and v, as inferred by a captioning model
(e.g., “cutting”, “holding”, or “placing”). For each inter-
action, we concatenate the center frame with the start and
end frames into a single composite frame and feed it to cap-
tioner to prediction. The second type, the Temporal Win-
dow Edge (Tuv), specifies the duration of the interaction
as Tuv = (tstart, tend), where tstart = fstart

FPS and tend = fend
FPS .

Here, fstart and fend represent the start and end frames of the
interaction, respectively, as predicted by a human-object in-
teraction tracker used in [12]. The third type, the Spatial
Relationship Edge (Suv), captures the relative position of
u with respect to v. Using the bounding box centers at
tstart, the relative horizontal position is determined based
on the xcenter coordinates, where xcenter = xmin+xmax

2 . If
xcenter,u > xcenter,v , u is labeled as “right”; otherwise, u
is labeled as “left”. Additionally, we track objects manipu-
lated by humans and update their spatial relation with other
nodes whenever an object is moved. Together, these edges
encode the semantic, spatial, and temporal relationships be-
tween the nodes, forming a comprehensive graph.

Layer 2 - Activity Zones: To estimate layout relations,
we first consider two activity zones, which is clustered us-
ing method introduced at 3.2, A and B, derived from the
video data. Using the centroid positions (xA, yA, zA) and
(xB , yB , zB) of each zone, we define their relative lay-
out based on their spatial arrangement. For instance, B
is labeled as “left of” A if xB > xA and the differences
along y and z axes are within a predefined threshold of
0.5. Similarly, “right of”, “in front of” and “behind” re-

lationships are determined by comparing coordinate dis-
placements along x, y, and z axes. These directional de-
scriptors are attached as attributes to the edge connecting
the zones. To capture relative distances, we compute the
Euclidean distance between the centroids of A and B as
dAB =

p
(xB � xA)2 + (yB � yA)2 + (zB � zA)2. Ad-

ditionally, we normalize the distance for scale invariance as
dnormalized
AB = dAB�dmin

dmax�dmin
, where dmin and dmax are the min-

imum and maximum distances across all zone pairs. we
categorize the distances into five levels based on thresh-
olds: 0.1, 0.2, 0.4, 0.7. Distances falling below these thresh-
olds are labeled as very close (0–3 steps), close (4–6 steps),
moderate (7–10 steps), far (11–15 steps), or very far (16+
steps). This categorization allows us to qualitatively assess
physical proximity between zones. This combined repre-
sentation, with directional relationships and normalized dis-
tances, enables reasoning about both the spatial layout and
physical proximity of the two activity zones.

Layer 3 - Scene Layout: To construct Layout Dis-
tance at Layer 3, we group multiple activity zones from
Layer 2 into higher-level spatial groupings based on room-
level context using captions generated by the captioning
model. These captions help identify the specific room
where each activity zone belongs, such as “kitchen” or “liv-
ing room”. We use the center frame and four uniformly
sampled frames per activity zone, feeding them to the cap-
tioner for room classification, followed by majority voting
for robust evaluation. The layout distance between rooms
is determined by analyzing their physical layout and po-
sitioning within the environment. Consider two rooms,
R1 and R2. Using the centroid coordinates (xr, yr, zr)
of each room—calculated as the average of the centers
of the activity zones belonging to that room—we com-



pute the Euclidean distance between them as dR1R2 =p
(xR2 � xR1)

2 + (yR2 � yR1)
2 + (zR2 � zR1)

2. This
distance estimation follows the same approach used in
Layer 2 for determining layout distances. These room-level
distances contextualize the spatial flow between areas, cap-
turing both proximity and potential movement pathways.

Lastly, as mentioned in Section 3.2, two additional hy-
perparameters are used: the visual threshold for feature sim-
ilarity, s⇤ = 0.6, and the distance threshold for spatial prox-
imity, d⇤ = 0.5.

9. Ablation Studies
Representation size and context window We compared
token counts for representing videos of various lengths (1,
3, 10, 20, and 30 minutes). LLovi, using a sliding window
approach, resulted in token counts of 5.1 17.7, 58.7, 117.7,
and 175.1k, respectively, as video length increased. In con-
trast, our graph approach produced significantly lower to-
ken counts of 3.2, 10.1, 30.9, 53.5, and 69.4k, demonstrat-
ing a more concise representation, particularly for longer
videos.

Method 1mins 3mins 10mins 20mins 30mins

LLovi 5.1 17.7 58.7 117.7 175.1
Ours 3.2 10.1 30.9 53.5 69.4

Table 4. The table compares token counts for representing videos
of various lengths. LLovi uses a sliding window approach, result-
ing in significantly higher token counts as video length increases,
whereas our graph achieves a more concise representation, partic-
ularly for longer videos.

Cluster by location vs Split by temporal window We
hypothesize that clustering temporally distant yet spatially
relevant frames within a layered graph enables VideoMind-
Palace to reduce information overload and redundancy in
long video analysis. To validate this, we compare our ap-
proach with an alternative method that segments the video
into shorter chunks and builds separate graphs for each
chunk, setting the number of chunks equal to our number
of clusters for a direct comparison. Table 5 shows that
our location-based clustering method outperforms tempo-
ral window segmentation across all video lengths, with im-
provements especially notable in Medium and Long videos
(2.7% and 3.4% higher, respectively). This indicates that
clustering by location effectively reduces redundancy while
preserving spatial relevance in longer videos.

Impact of different tools on reasoning performance
We evaluated the impact of each pipeline component on

Method Short Medium Long

Split by temporal window 48.5 44.5 42.2
Cluster by location 49.1 47.2 45.6

Table 5. Comparison of performance (%) between temporal win-
dow segmentation and location-based clustering across different
video lengths (Short, Medium, and Long).

the EgoSchema/VMB benchmark by replacing tools with
weaker or stronger alternatives where applicable. The
weaker and stronger LLMs (GPT-3.5 and GPT-4o) showed
changes of -4.2/-4.6 and +3.8/+4.3, respectively. For clus-
ter models (CLIP-S and CLIP-L), the changes were -1.2/-
0.9 and +0.7/+1.0. Stronger tracker and captioner tools
(BotSort and GPT-4o) contributed +0.5/+1.5 and +2.0/+2.6,
respectively. In main paper, we use GPT4, CLIP-B,
EgoSTARK as the tools. As shown below, stronger tools
improved performance, with the LLM and captioner having
the most significant impact.

Tools LLM Tracker Captioner Cluster

Weaker -4.2/-4.6 - - -1.2/-0.9
Stronger +3.8/+4.3 +0.5/+1.5 +2.3/+2.8 +0.7/+1.0

Table 6. Ablation of each component in our pipeline on the
EgoSchema/VMB benchmark by replacing tools with weaker or
stronger alternatives.

10. Video Mind Palace Benchmark
10.1. Query creation
To construct a robust set of VideoQA queries for the pro-
posed Video MindPalace Benchmark, we employed a sys-
tematic pipeline combining LLM-generated questions with
human verification to ensure quality and consistency. From
each video, we first extract keyframes sampled at 1 frame
per second (1 fps) to succinctly represent the content. For
each keyframe, we generate a descriptive caption using
GPT-4 and provide a detailed textual description of detected
objects, including their IDs and bounding box coordinates.
These inputs are fed into GPT-4 to generate diverse reason-
ing questions requiring spatial, temporal, and layout-aware
understanding, such as: “Which object is to the left of the
dining table?” (spatial), “What event happens immediately
after the person enters the kitchen?” (temporal), and “How
are the sofa and coffee table arranged in relation to the TV?”
(layout-aware). Each question is accompanied by five an-
swer options, including one correct answer and four dis-
tractors designed to challenge reasoning abilities. For open-
ended queries, we prompt GPT-4 to generate detailed cap-
tions for each keyframe and compile these captions to sum-
marize the actions and activities performed by the individ-



Figure 5. More qualitative results of VideoMindPalace on the VMB benchmark, showcasing examples for each question type. To demon-
strate how VideoMindPalace effectively answers these questions, we leverage GPT-4 to pinpoint specific graph components that provide
the necessary information for accurate responses.

ual throughout the video. To ensure accuracy, all questions
and answers undergo rigorous review by human annotators,
who validate correctness, correct errors, and refine phras-
ing for clarity and consistency. This human-in-the-loop step
is critical to maintaining high-quality questions across the
benchmark. The finalized questions are then tagged with
metadata, such as reasoning type, video length, and asso-
ciated video segments, and compiled into the Video Mind-
Palace Benchmark. This process ensures a comprehensive
and reliable set of VideoQA queries for evaluating video
understanding models. To generate challenging distractors,
we provide GPT-4 with keyframes and detailed tracking
data (bounding boxes, labels, IDs) to identify nearby objects
as potential distractors. To address tracking errors, annota-
tors then reviews the distractors for accuracy and difficulty,
ensuring at least two nearby objects are included.

10.2. Statistics
We construct our benchmark using 200 videos sourced from
the EPIC-KITCHENS and Ego-4D datasets, both of which
consist of long, unscripted egocentric recordings capturing
participants performing daily activities in various environ-
ments. On average, the selected videos are 11 minutes in
length. Specifically, 68 videos are categorized as short (less
than 3 minutes), 85 videos as medium-length (3 to 10 min-
utes), 35 as long (10 to 30 minutes), and 12 as very long

Figure 6. Query Distribution by Video length and Reasoning Cat-
egories.

(over 30 minutes). Each video length category includes be-
tween 100 and 300 questions, spanning all three types of
queries, resulting in a total of approximately 1,800 ques-
tions in the benchmark. For a detailed distribution of query
types by video duration and reasoning category, please refer
to Fig 6.


	Introduction
	Related Work
	Framework
	Encoding Human-Object Interactions
	Discovering Activity Zones
	Full Video Graph Construction

	Video MindPalace Benchmark
	Experiments
	Main Results
	Visualization and Discussion

	Limitation and Conclusion
	More qualitative results
	More graph construction details
	Prompt design of zero-shot video QA 
	Graph construction heuristic

	Ablation Studies
	Video Mind Palace Benchmark
	Query creation
	Statistics


