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This supplemental material is organized as follows: In
Section A, we compare results on real-world datasets and
analyze inference speed in Section B. Section C includes
additional examples from our RGBD-Art dataset. Details
of the robotic experiments can be found in Section D. Sec-
tion E presents and analyzes pose and size estimation results
for unseen objects, small parts, and symmetric parts. Fi-
nally, we showcase more qualitative results to demonstrate
the accuracy and sim-to-real adaptability of our approach in
Section F.

A. Results on Real-world Dataset
OPD [3] and MultiScan [6] datasets are valuable contribu-
tions to the study of articulated objects, focusing on large
scene-level parts with relatively coarse pose annotations
while lacking smaller parts and fine-grained pose and size
annotations. While our method should perform well to these
datasets, they are not our main focus due to their limited
coverage of smaller parts. We have attempted to use the
MultiScan dataset, but its depth images remain inaccessible
due to the ‘.zlib’ depth format, which we have been unable
to decode. We provide motion axis error results on OPD-
real dataset as in Tab. 1, highlighting robustness to realistic
distorted depth.

Table 1. Comparison results on OPD [3] dataset.

Method SG AGP GAPNet OPD-C OPD-O Ours
Motion axis error↓ 11.21◦ 12.03◦ 6.31◦ 9.06◦ 6.67◦ 5.47◦

OPD RCNN-C OPD RCNN-OOurs Point Cloud

GT motion axis
3DoF trans
3DoF rotation
3D size

3DoF trans
2DoF rotation

3DoF trans
2DoF rotation

B. Inference Efficiency Analysis
The pre-trained vision model (SAM [7] and FeatUp [1])
slightly increases computational cost compared to the base-
lines (tested on an A6000 GPU), as shown in the Tab. 2.
However, this cost is manageable for realistic robotics tasks,

as demonstrated in the video. Inference speed is not the
primary issue. During training, the backbone can prepro-
cess images and store feature embeddings to save time. We
also plan to optimize inference speed through distillation or
quantization methods in future work.

Table 2. Inference speed of different methods.

Method SG AGP GAPartNet Ours
Inference (Hz) 5 7 15 4

C. Dataset Examples
We present additional rendered RGB-D images and their
corresponding annotations from our RGBD-Art dataset in
Fig. 2 and Fig. 3. The dataset is divided into two subsets:
seen (Fig. 2) and unseen (Fig. 3). The seen subset contains
objects with articulated parts similar to those in the training
categories, while the unseen subset includes novel objects
with previously unseen articulated parts that belong to the
same categories.

D. Robotics Experiment Setup
Robotic Setup. We use the Kinova Gen2 6-DoF robotic
arm to test our algorithm. The RealSense D435 camera cap-
tures RGB-D images of the scene and is mounted on a tripod
across from the robot’s workspace. The camera is calibrated
to the robotic base frame, as shown in Figure 1.
Manipulation Strategy. Similar to GAParNet [2], we
adopt the manipulation stratey as follows after estimating
the pose and size:
1. Round Fixed Handle: Approach the handle along the

positive z-axis, open the gripper wider than the bounding
box, and then close it to grasp.

2. Line Fixed Handle: Similar to the round handle, but
orient the gripper’s opening perpendicular to the handle,
aligning it with the y-axis of the bounding box.

3. Hinge Handle: Approach and grasp the hinge handle,
then rotate it around the predicted axis of the revolute
joint.

4. Slider Button: Close the gripper, approach the button
from the positive z-axis, and press it.
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Figure 1. Robotic Setup.

5. Slider Drawer: Approach an open drawer along the z-
axis to retrieve items, or along the x-axis to open it, typ-
ically targeting a handle on the front face.

6. Hinge Door: Grab the handle to open the door, rotating
the gripper around the predicted shaft. If there’s no han-
dle and the door is ajar, clamp the outer edge along the
y-axis to open it.

7. Hinge Lid: Use a similar approach as for the hinge door.

E. More Quantitative Results
Unseen Object Results. We present the pose and size
results for unseen objects in our RGBD-Art dataset in Ta-
ble 3. The results demonstrate that our method can general-
ize across object categories, effectively handling novel parts
that belong to previously seen categories.

Table 3. Results of part pose estimation on unseen ob-
ject categories. PG=baseline modified from PointGroup [4].
AGP=baseline modified from AutoGPart[5].

Method Re ↓ Te↓ Se↓ mIoU ↑ A5 ↑ A10 ↑

PG [4] 99.78 0.131 0.091 9.63 0.34 0.56
AGP [5] 105.62 0.125 0.088 12.54 0.37 0.74

GAPartNet [2] 90.81 0.073 0.052 30.71 0.54 1.03
Ours 12.79 0.062 0.036 50.54 25.23 50.71

Improvement on Small-part Objects. Table 4 has shown
improved performance for small part classes like Hg.Kb and
Sd.Bn. We also evaluate performance using an extreme
challenge metric of part diameter

object diameter ≤ 0.1 to further high-
light small part performance. The improved performance
on small parts is presented in the table below.
Improvement on Symmetric Parts. We present per-part
pose results for the Re metric (↓), focusing on symmetric
parts such as the slider button, hinge door, slider lid, and
hinge lid, without symmetry tolerance. The results in Tab 5
show that our method effectively resolves visual ambiguity
in rotation by incorporating global context.

Table 4. Comparison results on small parts. SG=SoftGroup [8].
AGP=baseline modified from AutoGPart [5]. ‘-’ indicates no de-
tection, and we show only 5 detected classes.

Small Parts(AP50↑) Method Ln.F.Hl. Rd.F.Hl. Sd.Bn Hg.Dr. Hg.Kb.

Seen

SG [8] - - - - -
AGP [5] - - - - -

GAPNet [2] - - 5.92 - -
Ours 16.36 16.07 38.59 25.00 0.427

Unseen

SG [8] - - - - -
AGP [5] - - - - -

GAPNet [2] - - 8.16 - -
Ours 13.39 - 21.85 8.35 0.645

Table 5. Comparison results on symmetric parts.

Sym.(Re↓) Method Hg.Ld. Sd.Ld. Sd.Bn Hg.Dr.

Seen GAPNet 24.42 147.01 59.73 75.11
Ours 12.37 6.10 9.69 6.96

Unseen GAPNet 38.47 159.21 75.88 89.27
Ours 18.00 28.62 7.00 16.53

F. More Qualitative Results.
We present additional qualitative results using our realistic
RGBD-Art dataset, which mimics images captured by Re-
alSense D415 and real-world images captured by RealSense
D435. These cameras have different baselines, where the
baseline of 55mm for the D415 and 50mm for the D435.
The results are displayed in Fig. 4 and Fig. 5.
Results on RGBD-Art Datasets. As shown in Fig. 4, CAP-
Net effectively detects small parts and accurately estimates
their poses and sizes by leveraging RGB image features.
Results on Real-world Images. Despite differences in
camera baselines between real-world and training images,
the results highlight the sim-to-real capability of our model,
demonstrating cross-camera generalization and sim-to-real
performance. This also underscores the value of our
realism-enhanced dataset.
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Figure 2. Seen examples both used for training and testing in our RGBD-Art dataset. We show the photo-realistic RGB image,
realistic depth images, corresponding ground-truth annotations of semantic label, instance label, NPCS map, 6D pose and size.
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Figure 3. Unseen examples used for testing in our RGBD-Art dataset. We show the photo-realistic RGB image, realistic depth images,
corresponding ground-truth annotations of semantic label, instance label, NPCS map, 6D pose and size.



Figure 4. Qualitative results of the RGBD-Art dataset. We present the RGB-D images, the estimated NPCS for each component of our
method, as well as the resulting pose and size estimations. Additionally, we provide comparisons with the baseline method GAPartNet [2]
and ground truth annotations for qualitative evaluation .

Figure 5. Qualitative results from real-world images captured using the RealSense D435 camera. We showcase the RGB-D images,
the estimated NPCS for each component of our method, and the resulting pose and size estimations. Additionally, we provide comparisons
with the baseline method GAPartNet [2] for qualitative evaluation .
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Chloe Rolland, Laura Gustafson, et al. Sam 2: Segment any-
thing in images and videos. arXiv preprint arXiv:2408.00714,
2024. 1

[8] Thang Vu, Kookhoi Kim, Tung M Luu, Thanh Nguyen, and
Chang D Yoo. Softgroup for 3d instance segmentation on
point clouds. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 2708–2717,
2022. 2


	Results on Real-world Dataset
	Inference Efficiency Analysis
	Dataset Examples
	Robotics Experiment Setup
	More Quantitative Results
	More Qualitative Results.

