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Supplementary Material

1. Overview
This supplementary material provides additional experi-
ments, visualizations, and implementation details to support
our main paper. The content is organized as follows:
• Extra Ablation Experiments (Sec. 2). We analyze the

impact of DINOv2 cache capacity, image augmentation
views, and AFV class center calculation methods on our
model’s performance.

• Extra Overhead Discussion (Sec. 3). We analyze the
storage and time complexity of our method, showing its
efficiency through reduced dual graph update frequency
and detailed complexity approximations.

• Extra Visualization (Sec. 4). We present t-SNE visual-
izations of class and hyper-class distributions, cached fea-
tures from CLIP and DINOv2, and examples of queried
classes to illustrate our method’s effectiveness.

• Extra Implementation Details (Sec. 5). We provide
comprehensive dataset statistics and textual prompts used
for various recognition tasks.
These materials offer a deeper understanding of our

method’s overhead, robustness, visual performance, and ex-
perimental setup.

2. Extra Ablation Experiments
2.1. Ablation of the Capacity of DINOv2 Cache
We present the performance of COSMIC with different ca-
pacities (number of examples stored) in DINOv2’s cache
in Tab. 1. It shows that increasing the number of stored
examples leads to better prediction, but COSMIC achieves
reasonable performance even with a smaller cache capacity.

2.2. Ablation of the Augment Views of Images
We evaluated the performance of COSMIC with different
numbers of augmented views of images, as shown in Tab. 2.
The results indicate that increasing the number of views en-
hances prediction. Specifically, COSMIC achieves its high-
est Top-1 accuracy gain (2.02%) with 16 views. However,
even with fewer augmented views, COSMIC still performs
well and has the advantage of faster inference times.

2.3. Ablation of Calculation of AFV Class Center
To investigate the impact of various class center calcula-
tion methods in the Auxiliary Fine-grained Visual space on
performance, we conducted a comparative analysis. Tab. 3
shows our method significantly improves upon the CLIP-
RN-50 baseline using both average and attention-weighted

Table 1. Performance comparison using different cache capacities
(number of examples stored) in DINOv2’s cache on ImageNet-
Val [3]. For each test, we use CLIP-RN-50 and DINOv2 ViT-S/14
as our visual encoders.

Method # of Examples Stored Top-1 Accuracy (%) Gain (%)

CLIP-RN-50 - 66.99 -

Ours

1 67.10 0.11
3 68.59 1.60
6 68.90 1.91
8 68.92 1.93

10 68.86 1.87

Table 2. Performance comparison using different augment views
of images on ImageNet-Val [3]. We use CLIP-RN-50 and DINOv2
ViT-S/14 for each test as our visual encoders.

Method # of Augment Views Top-1 Accuracy (%) Gain (%)

CLIP-RN-50 - 66.99 -

Ours

1 68.37 1.47
2 68.59 1.69
4 68.79 1.89
8 68.87 1.97
16 68.92 2.02
32 68.90 2.00

AFV class centers. The average method achieves the high-
est Top-1 accuracy gain (1.91%), slightly surpassing the
attention-weighted method (1.62%) and the EMA method
(1.60%). This suggests that equal consideration of all
cached features may better capture class-level representa-
tions. The slight performance decrease (-0.03%) of the
EMA method without entropy-based selection emphasizes
the importance of careful feature selection. These results
highlight the critical role of AFV class center calculation
in leveraging cached features, with the simple averaging
method emerging as the preferred choice due to its effec-
tiveness and simplicity.

3. Extra Overhead Discussion
As shown in Tab. 4, time cost can be reduced in real
applications by decreasing the frequency of dual graph
updates—such as every 50 steps—while still achieving
SOTA. [Storage]: Constructing additional graph structures
only requires O(K2) space to store the adjacency ma-
trix. Additionally, storing extra visual features only re-
quires (class num (K) + clique num) × cache size (n) ×
feat dim (di) space, which is highly efficient with pytorch
tensor. The approximated total storage/sample: O((d1 +



Figure 1. With a sample from Pets dataset [11], we implement t-SNE visualization of test features querying Textual Class Centers (left),
CLIP Shared Semantics Hyper-class Centers (middle), and Auxiliary Fine-grained Visual Hyper-class Centers (right). “Target” denotes
the ground-truth label. CLIP-ViT-B/16 and DINOv2 ViT-L/14 serve as visual encoders.

Table 3. Performance comparison using different AFV class cen-
ter calculations on ImageNet-Val [3]. CLIP-RN-50 and DINOv2
ViT-S/14 are used as visual encoders. “Average” means the cen-
troid of cached features for each class. “Attn weighted” means the
weighted average of cached features for each class, with weights
being the attention scores between the test feature and cached fea-
tures. “EMA” means the exponential moving average of historical
test features. “EN” means the prediction entropy-based selection
of features.

Method AFV Center Top-1 Accuracy (%) Gain (%)

CLIP-RN-50 - 66.99 -

Ours
Average 68.90 1.91
Attn weighted 68.61 1.62
EMA 68.59 1.60
EMA w/o EN 66.96 -0.03

d2)nK + K2 + clique num × (d1 + d2)). [Time]: Time
complexity b(K− b)3(b/3) of maximal clique search is pre-
sented in main text. The approximated total time/sample:
max (O(CLIP),O(DINOv2)) + O(d1(2K)2 + d2K

2 +
b(K − b)3(b/3) + nK × clique num) where b is graph de-
generacy.

4. Extra Visualization
4.1. Distribution of Classes and Hyper-classes
To showcase the effectiveness of our method during the
cold-start phase, we visualize the distribution of randomly
selected test samples from the first 100 tests in the Pets
dataset [11] across three query spaces: Textual Class Cen-
ters, CLIP Shared Semantics Hyper-class Centers, and Aux-
iliary Fine-grained Visual Hyper-class Centers. We employ
t-SNE to reduce the dimensionality of the high-dimensional
features. As illustrated in Fig. 1, hyper-classes exhibit a
more uniform distribution in the feature space. Notably,
when ground truth (GT) feature centers are obscured by
neighboring points, the Hyper-class Centers containing the

GT target are more readily queried by test samples, result-
ing in improved prediction accuracy.

4.2. T-SNE of Cached Features from CLIP & DI-
NOv2

In Fig. 2, we visualize the cached visual features from CLIP
and DINOv2 caches after testing on various subsets of data
using t-SNE. We observe that features of the same class
(same color) in the DINOv2 cache are more clustered, es-
pecially during the cold-start phase, where it exhibits more
distinctive class clustering and effectively mitigates overlap
between similar categories, thereby facilitating fine-grained
visual feature retrieval.

(a) Pets [11]

(b) Flower102 [10]

Figure 2. Distribution of cached visual features from CLIP (left)
and DINOv2 (right) caches. The capacity of both caches are set
to 50 and we capture the distribution in 1000 test iterations. CLIP-
ViT-B/16 and DINOv2 ViT-L/14 serve as visual encoders.



Table 4. We use CLIP ViT-B-16 and DINOv2 ViT-S/14 as the backbone, updating the dual graph every 50 steps to show the average time
& storage overhead per test sample.

Test Type CLIP Inference TDA Overhead COSMIC Overhead
DINOv2 Inference CLIP Graph DINOv2 Graph

Flower102 [10]
Time(ms) 12.52 8.42 10.65 5.37 3.75
Storage(mb) 147.87 40.93 42.84 0.43 0.15
Top-1 Acc(%) 72.76 75.11 - 77.10 80.92

Ucf101 [13]
Time(ms) 17.94 10.99 12.20 6.31 4.32
Storage(mb) 147.91 40.61 74.09 1.62 1.46
Top-1 Acc(%) 94.36 94.40 - 94.77 95.33

4.3. Samples of Queried Classes
Fig. 3 illustrates the enhanced performance achieved by
querying hyper-classes within the CLIP Shared Semantics
and Auxiliary Fine-grained Visual graphs, as opposed to
the conventional approach of querying classes in the naive
CLIP cache. Both graphs leverage the structured relation-
ships and hierarchical organization of hyper-classes, en-
abling more precise and contextually relevant retrieval of
semantic information.

5. Extra Implementation Details
5.1. Dataset Details
In Tab. 5, we present detailed statistics for each dataset used
in our experiments, including the number of classes, test set
sizes, and their respective target tasks.

5.2. Textual Prompts Details
Tab. 6 outlines the prompt formats for various visual recog-
nition datasets. These prompts guide the model in identi-
fying specific objects or scenes within each class, with tai-
lored designs for optimal performance. This variation en-
hances the model’s generalization and accuracy.



CLIP Cache Prediction CSS Prediction

Siamese
Birman
Ragdoll
Russian blue 
Maine coon

Class Logit Class Logit

AFV Prediction

Class Logit

0.6361
0.3198
0.0279
0.0040
0.0036

Birman
Siamese
Ragdoll           
Persian
British shorthair

0.0733
0.0419
0.0405
0.0371
0.0363

Birman
Ragdoll
Siamese
Persian
Maine coon

0.4959 
0.4903
0.0103
0.0012
0.0003

CLIP Cache Prediction CSS Prediction

Siamese
Sphynx
Egyptian Mau
Maine coon
Bombay

Class Logit Class Logit

AFV Prediction

Class Logit

0.3539
0.3324
0.3123
0.0007
0.0003

Sphynx
Siamese
Egyptian Mau           
Abyssinian
Bombay

0.0543
0.0415
0.0409
0.0373
0.0369

Sphynx
Siamese
Egyptian Mau                      
Bengal
Bombay

0.9827 
0.0043
0.0020
0.0013
0.0010

CLIP Cache Prediction CSS Prediction

Newfoundland
Leonberger
Saint Bernard
Keeshond
Great Pyrenees

Class Logit Class Logit

AFV Prediction

Class Logit

0.6113
0.3708
0.0127
0.0022
0.0018

Leonberger
Newfoundland
Saint Bernard           
Keeshond
English Cocker 

0.0667
0.0402
0.0394
0.0371
0.0367

Leonberger
Saint Bernard                      
Newfoundland
Great Pyrenees
Keeshond

0.9191 
0.0224
0.0165
0.0090
0.0033

CLIP Cache Prediction CSS Prediction

Beagle
Basset Hound
English Cocker 
English Setter 
Miniature Pinscher

Class Logit Class Logit

AFV Prediction

Class Logit

0.7140
0.1166
0.0314           
0.0260
0.0230

Basset Hound
Beagle
German Shorthaired
English Setter 
English Cocker 

0.0499
0.0397
0.0348
0.0342
0.0336

Basset Hound
Beagle
German Shorthaired
English Cocker 
Shiba Inu

0.9814
0.0060
0.0012
0.0011
0.0005  

CLIP Cache Prediction CSS Prediction

Beef Tartare
Tuna Tartare
Beef Carpaccio
Filet Mignon
Foie Gras

Class Logit Class Logit

AFV Prediction

Class Logit

0.4975
0.4975
0.0017
0.0007
0.0007

Tuna Tartare
Beef Tartare          
Beef Carpaccio
Filet Mignon
Foie Gras

0.0312
0.0202
0.0184
0.0181
0.0181

Tuna Tartare
Beef Tartare          
Beef Carpaccio
Filet Mignon
Foie Gras

0.7974 
0.1361
0.0060
0.0054
0.0039

CLIP Cache Prediction CSS Prediction

Indoor Pub
Indoor Bistro
Indoor Diner
Bar
Outdoor Diner

Class Logit Class Logit

AFV Prediction

Class Logit

0.4418
0.4150
0.0926
0.0182
0.0118

Indoor Bistro
Indoor Pub
Indoor Diner
Bar
Outdoor Diner

0.0152
0.0052
0.0051
0.0050
0.0049

Indoor Bistro
Indoor Diner
Dining Car
Vehicle Dinette
Indoor Pub

0.1361 
0.0692
0.0578
0.0350
0.0326

CLIP Cache Prediction CSS Prediction

Huevos Rancheros
Tacos
Chicken Quesadilla 
Ceviche
Nachos

Class Logit Class Logit

AFV Prediction

Class Logit

0.4914
0.4893
0.0102
0.0084
0.0013

Tacos
Huevos Rancheros
Chicken Quesadilla 
Ceviche
Nachos

0.0494
0.0209
0.0196
0.0195
0.0189

Tacos
Huevos Rancheros
Chicken Quesadilla 
Nachos
breakfast Burrito

0.4729 
0.1074
0.0626
0.0593
0.0305

CLIP Cache Prediction CSS Prediction

Cafeteria
Lecture Room
Indoor Booth
Conference Center
Computer Room

Class Logit Class Logit

AFV Prediction

Class Logit

0.9973
0.0019
0.0006           
0.0001
0.0000

Indoor Booth
Lecture Room
Cafeteria
Conference Center
Computer Room

0.0057
0.0057
0.0052
0.0051
0.0047

Indoor Booth
Art Studio
Lecture Room
Art School
Office

0.0434
0.0123
0.0119
0.0113
0.0108  

Figure 3. Samples of queried classes with clip feature cache, CSS Graph, and AFV Graph respectively. For each test, CLIP-ViT-B/16 and
DINOv2 ViT-L/14 are used as visual encoders.

Table 5. Dataset Summary for Various Recognition Tasks. Note that we evaluate test datasets for all benchmarks.

Dataset Classes Train size Validation size Test size Target Task

Caltech101 [4] 100 4,128 1,649 2,465 Object recognition
DTD [2] 47 2,820 1,128 1,692 Texture recognition
EuroSAT [5] 10 13,500 5,400 8,100 Satellite image recognition
FGVCAircraft [9] 100 3,334 3,333 3,333 Fine-grained aircraft recognition
Flowers102 [10] 102 4,093 1,633 2,463 Fine-grained flowers recognition
Food101 [1] 101 50,500 20,200 30,300 Fine-grained food recognition
OxfordPets [11] 37 2,944 736 3,669 Fine-grained pets recognition
StanfordCars [8] 196 6,509 1,635 8,041 Fine-grained car recognition
SUN397 [15] 397 15,880 3,970 19,850 Scene recognition
UCF101 [13] 101 7,639 1,898 3,783 Action recognition

ImageNet [3] 1,000 1.28M - 50,000 Object recognition
ImageNet-A [7] 200 - - 7,500 Robustness of adversarial attack
ImageNet-V2 [12] 1,000 - - 10,000 Robustness of collocation
ImageNet-R [6] 200 - - 30,000 Robustness of multi-domains
ImageNet-Sketch [14] 1,000 - - 50,889 Robustness of sketch domain



Table 6. Textual Prompts for Various Recognition Tasks. The left column lists the dataset names, while the right column provides the
prompt templates for each dataset, with empty curly braces representing the class placeholder.

Dataset Prompts

Caltech101 [4] “a photo of a {}.”
DTD [2] “{} texture.”
EuroSAT [5] “a centered satellite photo of {}.”
FGVCAircraft [9] “a photo of a {}, a type of aircraft.”
Flowers102 [10] “a photo of a {}, a type of flower.”
Food101 [1] “a photo of {}, a type of food.”
OxfordPets [11] “a photo of a {}, a type of pet.”
StanfordCars [8] “a photo of a {}, a type of car.”
SUN397 [15] “a bad photo of the {}.”, “a {} in a video game.”, “a origami {}.”, “a photo of the small {}.”, “art of the {}.”, “a photo of the large {}.”, “itap of a {}.”
UCF101 [13] “a photo of a person doing {}.”

ImageNet [3] “a bad photo of the {}.”, “a {} in a video game.”, “a origami {}.”, “a photo of the small {}.”, “art of the {}.”, “a photo of the large {}.”, “itap of a {}.”
ImageNet-A [7] “a bad photo of the {}.”, “a {} in a video game.”, “a origami {}.”, “a photo of the small {}.”, “art of the {}.”, “a photo of the large {}.”, “itap of a {}.”
ImageNet-V2 [12] “a bad photo of the {}.”, “a {} in a video game.”, “a origami {}.”, “a photo of the small {}.”, “art of the {}.”, “a photo of the large {}.”, “itap of a {}.”
ImageNet-R [6] “a bad photo of the {}.”, “a {} in a video game.”, “a origami {}.”, “a photo of the small {}.”, “art of the {}.”, “a photo of the large {}.”, “itap of a {}.”
ImageNet-Sketch [14] “a bad photo of the {}.”, “a {} in a video game.”, “a origami {}.”, “a photo of the small {}.”, “art of the {}.”, “a photo of the large {}.”, “itap of a {}.”
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