
DEIM: DETR with Improved Matching for Fast Convergence

Supplementary Material

1. Experimental Settings

Dataset and metric. We evaluate our method on the
COCO [20] dataset, training DEIM on train2017 and
validating it on val2017. Standard COCO metrics are re-
ported, including AP (averaged over IoU thresholds from
0.50 to 0.95 with a step size of 0.05), AP50, AP75, and AP
at different object scales: APS , APM , and APL.

Table 9. Different hyperparameters for D-FINE models
trained with DEIM.

D-FINE X L M S

Base LR 5e-4 5e-4 4e-4 4e-4
Min LR 2.5e-4 2.5e-4 2e-4 2e-4
Backbone LR 5e-6 2.5e-5 4e-5 2e-4
Backbone MinLR 2.5e-6 1.25e-5 2e-5 1e-4
Weight of MAL 1 1 1 1
γ in MAL 1.5 1.5 1.5 1.5
Freeze Backbone BN False False False False
Decoder Act. SiLU SiLU SiLU SiLU
Epochs 50 50 90 120

Table 10. Different hyperparameters for RT-DETRv2 models
trained with DEIM.

RT-DETRv2 X L M⋆ M S

Base LR 2e-4 2e-4 2e-4 2e-4 2e-4
Min LR 1e-4 1e-4 1e-4 1e-4 1e-4
Backbone LR 2e-6 2e-5 2e-5 1e-4 2e-4
Backbone MinLR 1e-6 1e-5 1e-5 5e-5 1e-4
Weight of MAL 1 1 1 1 1
γ in MAL 1.5 1.5 1.5 1.5 1.5
Freeze Backbone BN False False False False False
Decoder Act. SiLU SiLU SiLU SiLU SiLU
Epochs 60 60 60 120 120

Implementation details. We implement and validate our
method using the D-FINE [27] and RT-DETRv2 [24, 43]
frameworks. Most hyperparameters follow their original
settings, with differences detailed in Tab. 9 and Tab. 10, re-
spectively. Inspired by the FlatCosine LR scheduler in RT-
MDet [25], we propose a novel data augmentation sched-
uler tailored for Dense O2O. Attention mechanisms in DE-
TRs are critical for extracting accurate object features for
localization and classification. However, learning attention
from scratch without inductive biases can be challenging.
To mitigate this, we introduce a data augmentation warmup
strategy, referred to as DataAug Warmup, which simplifies
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Figure 5. An illustrated example of our proposed novel training
scheme for learning rate and data augmentation scheduler.

the learning by disabling advanced data augmentations dur-
ing the initial epochs. An example of the FlatCosine LR
and proposed DataAug schedulers for 60 training epochs is
shown in Fig. 5.

2. Comparison with Lighter YOLO Detectors

We present the results of comparisons with more
lightweight real-time models (S and M sizes) in the Ta-
ble 11. Based on the strong real-time detectors RT-
DETRv2 [24] and D-FINE [27], our DEIM achieves sig-
nificant improvements across the board. Notably, in RT-
DETRv2, all three model sizes show an approximately 1
AP improvement, with the DEIM-RT-DETRv2-M⋆ achiev-
ing a remarkable 1.3 AP gain. Compared to other methods,
our approach achieves the latest state-of-the-art results.

3. Additional Results

Effectiveness of the minor modifications. We incorpo-
rate minor modifications, including unfreezing the BN lay-
ers in the Backbone, adopting the FlatCosine LR scheduler,
and replacing the Decoder activation function with SiLU,
into both D-FINE-L and D-FINE-X. After training for 36
epochs, we observe that these changes have no impact on
D-FINE-L but lead to a 0.1 AP improvement for D-FINE-
X (55.4 vs. 55.5). This configuration is used as the new
baseline for our experiments.

Number of positive samples between with/without Dense
O2O. During one epoch of training, we compared the
number of positive samples in the same training images



Table 11. Comparison with S and M sized real-time object detectors on COCO [20] val2017. ⋆ indicates that the NMS is tuned with
a confidence threshold of 0.01.

Model #Epochs #Params. GFLOPs Latency (ms) APval APval
50 APval

75 APval
S APval

M APval
L

YOLO-based Real-time Object Detectors
YOLOv8-S [12] 500 11 29 6.96 44.9 61.8 48.6 25.7 49.9 61.0
YOLOv8-M [12] 500 26 79 9.66 50.2 67.2 54.6 32.0 55.7 66.4
YOLOv9-S [34] 500 7 26 8.02 46.8 61.8 48.6 25.7 49.9 61.0
YOLOv9-M [34] 500 20 76 10.15 51.4 67.2 54.6 32.0 55.7 66.4
Gold-YOLO-S [33] 300 22 46 2.01 46.4 63.4 - 25.3 51.3 63.6
Gold-YOLO-M [33] 300 41 88 3.21 51.1 68.5 - 32.3 56.1 68.6
YOLOv10-S [32] 500 7 22 2.65 46.3 63.0 50.4 26.8 51.0 63.8
YOLOv10-M [32] 500 15 59 4.97 51.1 68.1 55.8 33.8 56.5 67.0
YOLO11-S⋆ [13] 500 9 22 2.86 47.0 63.9 50.7 29.0 51.7 64.4
YOLO11-M⋆ [13] 500 20 68 4.95 51.5 68.5 55.7 33.4 57.1 67.9

DETR-based Real-time Object Detectors
RT-DETR-R18 [43] 72 20 61 4.63 46.5 63.8 50.4 28.4 49.8 63.0
RT-DETR-R34 [43] 72 31 93 6.43 48.9 66.8 52.9 30.6 52.4 66.3
RT-DETRv2-S [24] 120 20 60 4.59 48.1 65.1 57.4 36.1 57.9 70.8
DEIM-RT-DETRv2-S 120 20 60 4.59 49.0 66.1 53.3 32.6 52.5 64.1
RT-DETRv2-M [24] 120 31 92 6.40 49.9 67.5 58.6 35.8 58.6 72.1
DEIM-RT-DETRv2-M 120 31 92 6.40 50.9 68.6 55.2 34.3 54.4 67.1
RT-DETRv2-M∗ [24] 72 33 100 6.90 51.9 69.9 56.5 33.5 56.8 69.2
DEIM-RT-DETRv2-M∗ 60 33 100 6.90 53.2 71.2 57.8 35.3 57.6 70.2
D-FINE-Nano [27] 148 4 7 2.12 42.8 60.3 45.5 22.9 46.8 62.1
DEIM-D-FINE-Nano 148 4 7 2.12 43.0 60.4 46.2 24.5 47.1 62.1
D-FINE-S [27] 120 10 25 3.49 48.5 65.6 52.6 29.1 52.2 65.4
DEIM-D-FINE-S 120 10 25 3.49 49.0 65.9 53.1 30.4 52.6 65.7
D-FINE-M [27] 120 19 57 5.55 52.3 69.8 56.4 33.2 56.5 70.2
DEIM-D-FINE-M 90 19 57 5.55 52.7 70.0 57.3 35.3 56.7 69.5
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Figure 6. # Positive Samples with and without Dense O2O in
One Epoch of Training. Base indicates without Dense O2O.

with and without using Dense O2O, as shown in Fig. 6. Af-
ter incorporating Dense O2O, the number of positive sam-
ples significantly increases. This further supports our claim
that Dense O2O effectively enhances supervision.

Studies of the number of positive samples. We adjust
the average number of objects per image during training by

Table 12. Varying the number of objects per training image.

Avg # objects AP AP50 AP75

Training 24 Epochs
∼ 10 51.7 69.5 55.8
∼ 25 52.5 70.6 56.7
∼ 50 52.2 70.1 56.4

Table 13. Training and validation accuracy.

Model APtrain APval

RT-DETRv2-R50 65.1 53.4
w/ DEIM 64.8 54.3

modifying Dense O2O. As shown in Tab. 12, performance
improves significantly when the number increases from 10
(without Dense O2O) to 25 (Default Dense O2O) but drops
at 50 (Max Dense O2O). This decline is likely due to an im-
balance in the positive-to-negative ratio and a data distribu-
tion shift caused by too many objects. Notably, an average
of 25 objects aligns with the default experimental setting



Figure 7. Qualitative Comparison between D-FINE-L and
DEIM. In each paired image, the left is from D-FINE-L while the
right is predicted by DEIM-D-FINE-L (Score threshold = 0.5).

used in this study, corresponding to the default Dense O2O
configuration.

Training vs. validation accuracy. As shown in Tab. 13,
DEIM achieves higher validation accuracy and slightly
lower training accuracy, indicating reduced overfitting on
the training set and improved adaptability to new samples.

4. Visualizations
We present the qualitative comparison results in Fig. 7.
These results demonstrate that DEIM effectively addresses
two critical issues faced by D-FINE-L: high-confidence du-
plicated predictions and false positives. For example, in the
top row, a single kite is erroneously assigned four highly
overlapping bounding boxes, each with high confidence
scores. Furthermore, as shown in the bottom row, D-FINE-
L misclassifies a socket and a wall-mounted object as a
clock while failing to detect the bottle. By incorporating
DEIM during training, the detector successfully resolves
these challenges. This visualization highlights the signifi-
cant advancements enabled by DEIM, underscoring its po-
tential for improving detection accuracy.


