
DaCapo: Score Distillation as Stacked Bridge for Fast and
High-quality 3D Editing

Supplementary Material

8. Rationale behind DaCapo
Previous SDS-based methods suffer from lengthy optimiza-
tion with slow inference and degenerated results. We at-
tribute this limitation to their internal conflicts from source
preservation versus editing or potential editing directions
that may interfere with each other. Inspired by the Mask
operation in 2D editing, which we interpret as spatial sep-
aration between preservation and edit, we propose to seek
a temporary separation between them for 3D scene editing,
as the multi-view masks are expensive to obtain and update
when the 3D scene gets updated in editing process. Given
the semantic similarities between source and target scenes,
we also want to seek a short editing path directly bridg-
ing from the source and target. Since the similarities mean
they are relatively close in data manifold and direct bridg-
ing could be a short editing path. This short path would
contribute to the speed-up of editing process. Next we will
show how to achieve the two goals with stacked bridge.

8.1. Motivation
Inspired by the Mask operation in 2D editing, we pro-
pose separating preservation and editing temporarily for 3D
scenes, as multi-view masks are costly to obtain and up-
date. Given the semantic similarities between source and
target scenes, we aim to find a short editing path directly
connecting them. This short path, due to their proximity in
the data manifold, helps speed up the editing process. Next,
we explain how the stacked bridge achieves these goals.

The nature of temporary (spatial) separation is to assign
different tasks to different time stages (regions). Diffusion
sampling naturally does this: early high-noise stages focus
on image contours, while later low-noise stages add fine
details. This inspired us to mimic diffusion sampling,
especially since SDS-based methods already add and re-
move noise at each step. We transform 3D editing optimiza-
tion into a diffusion-like sampling process with coarse-to-
fine stages. Early high-noise stages prioritize preservation
to shape structure and guide editing, while later low-noise
stages add texture details. We start with sampling-version
DDS, i.e, DDS with diffusion time schedule or decreasing
time schedule.

8.2. Stacked Bridge as approximation of DDIB
We further analyzed the theoretical properties of the
sampling-version DDS and found that it can be seen as an
approximation of DDIB. Unlike DDIB, where inversion and
editing occur sequentially, in the sampling-version DDS,

they happen simultaneously (i.e., using the score difference
instead of treating the two scores as separate update direc-
tions). Thus, we refer to it as the Stacked Bridge.

Since the sampling-version DDS retains the advantage
of optimization-based methods for directly updating 3D pa-
rameters and the stacked form offers a significantly shorter
path compared to the concatenated bridge, we chose to ap-
proximate DDIB using the Stacked Bridge. Instead of di-
rectly extending DDIB to multi-view rendering (which we
include as a baseline), Stacked Bridge proves more efficient.

8.2.1. Approximation Error
However, the simple Stacked Bridge framework instanti-
ated with the sampling-version DDS fails to approximate
DDIB effectively. We analyze three reasons for this in
the main text and propose targeted enhancements: Source-
Target Coupling, improved score estimation, and Manifold
Correction Gradient. Sampling-version DDS with the three
enhancements becomes our proposed DaCapo framework,
which is a better implementation of the Stacked Bridge
framework. DaCapo provides a better estimation of DDIB
and thus serves as a direct transport path from source to tar-
get 3D parameters.

9. More details of DaCapo
We summary our Algorithm in Alg. 1.

9.1. Classifier Guidance in DaCapo

Recall that the overall editing ODE of DaCapo is:

dx =

wedit(t)
(
ϵtgtϕ − ϵsrcϕ

)
+ walign(t)

(
xtgt
t − xsrc

t

)
+ wcorrect(t)

(
ϵtgtuncond − ϵsrcuncond

)
dt.

(19)
We can simplify the equation above as dx = vϕ(t,xt)dt.
The score estimations ϵtgtϕ and ϵsrcϕ are the implicit classi-
fier score terms in Classifier-Free Guidance (CFG) [13], in-
cluding the image guidance and text guidance as in Intruct-
Pix2Pix [1]. The implicit classifier scores are calculated as
follows:

ϵtgtϕ = ωy(ϵϕ(x
tgt
t , ytgt,xsrc, t)− ϵϕ(x

tgt
t , y∅,x

src, t))

+ ωI(ϵϕ(x
tgt
t , y∅,x

src, t)− ϵϕ(x
tgt
t , y∅,x∅, t)),

ϵsrcϕ = ωy(ϵϕ(x
src
t , ysrc,xsrc, t)− ϵϕ(x

src
t , y∅,x

src, t))

+ ωI(ϵϕ(x
src
t , y∅,x

src, t)− ϵϕ(x
src
t , y∅,x∅, t))

(20)
where ωI = 1.5 and ωy = 7.5 are image and text guidance



Figure 7. More editing results of DaCapo (Part 1).

scale respectively, y∅ and x∅ are null text and image condi-
tion. xsrc

t and xtgt
t are noisy samples of source renderings

and target renderings. The unconditional score ϵtgtuncond and
ϵsrcuncond are obtained with null conditions:

ϵtgtuncond = ϵϕ(x
tgt
t , y∅,x∅, t),

ϵsrcuncond = ϵϕ(x
src
t , y∅,x∅, t).

(21)

9.2. The weighting functions

As defined in equation 9, 16, and 17, the three terms all
have a time-dependent weighting function. The weighting
functions initially come from the score calculation or sam-
ple diffusion as in Equation 10 and 2, but we can extend
them to general time-dependent weighting functions empir-
ically for improved 3D editing performance. As noted in
Section 4.2, the coupling weighting function controls the



Figure 8. More editing results of DaCapo (Part 2).

Algorithm 1 The Stacked Bridge with DaCapo
Input: Max/min time step tmax and tmin, the total opti-
mization step N the target/source prompt ytgt and ysrc, the
source 3D scene model θsrc

1: Initialization: the 3D model to be updated θ = θsrc

2: for each step i ∈ [1, N ] of the 3D optimization do
3: Sample: Camera Pose c,

xtgt
0 ,xsrc

0 = g(θ, c), g(θsrc, c),
t = tmax − (tmax − tmin)

i
N .

4: Add noise:
xt :=

√
ᾱtx0 +

√
1− ᾱtϵt, ϵt ∼ N (0, I)

5: Predict ϵtgtϕ , ϵsrcϕ , ϵtgtuncond and ϵsrcuncond via Equa-
tion 20 and 21

6: Compute the DaCapo vector field vϕ(t,xt) accord-
ing to Equation 19.

7: Update the 3D model θ with vϕ(t,xt)

via vϕ(t,xt)
∂xtgt

0

∂θ
8: end for
9: return the edited 3D model parameter θ.

strength of source preservation, thus requiring a relatively
strong preservation at the early stages of editing to constrain
the editing process for the temporal separation of preser-
vation and edit. Thus we define walign(t) as a decreasing

function of time step t. The three weight functions used in
DaCapo are as follows:

wedit(t) = 1− 0.1 ·
√
1− ᾱt

walign(t) = 0.01 + 0.25 ·
√
1− ᾱt

wcorret(t) = 1− 0.5 ·
√
1− ᾱt

(22)

where ᾱ =
∏t

s=1 αs is the variance schedule variables.

9.3. Negative Classifier Scores
Inspired by NFSD, we could further include negative clas-
sifier scores (with negative prompt as text condition) as an
additional component of MCG. We define the negative clas-
sifier scores as:

ϵneg = wneg(ϵϕ(x
tgt
t , yneg,x

src, t)− ϵϕ(x
tgt
t , y∅,xsrc, t))

w2 =

{
0.1 if t > 0.2,

0 otherwise.
(23)

where yneg is the negative prompts and wneg is the coeffi-
cient for negative classifier score.

10. More editing Results
We present additional editing results to demonstrate the
editing efficiency and quality of DaCapo. Relevant results



Figure 9. More editing results of DaCapo on 3DGS scenes.

Figure 10. Qualitative Comparsion of PDS and DaCapo at time-step 2500.

are shown in Figure 7 and Figure 8, all of which were opti-
mized within 2500 steps, with an average time of approx-
imately 30 minutes. Editing results on 3DGS are presented
in Figure 9.

We also compare the editing results of PDS and DaCapo
at 2500th step in Figure 10. The results demonstrate the
effectiveness and efficiency of the proposed DaCapo.


