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Supplementary Material

A. Extended DeRS Compression and Upcycling

In our medical multi-modal and code generation experiments,
the original FFN layer in a pre-trained dense model is upcy-
cled into a parallel structure consisting of a universal FFN
layer and a MoE layer containing N FFN experts. The uni-
versal FFN and the N experts are all initialized from the
original FFN weight. The universal FFN processes all inputs,
while the N experts are sparsely activated by a router for
each input. The outputs from the universal FFN and the MoE
layer are then summed to form the final output.

In the main body, we applied the proposed DeRS
paradigm only to the N experts in the MoE layer, since
the universal FFN is not sparsely activated by the router,
meaning it cannot be strictly considered as a MoE expert.
Here, considering that both the universal FFN and the N
MoE experts share the same initial weight, we extend our
DeRS compression and DeRS upcycling to the universal
FFN layer to further reduce parameter redundancy.

Specifically, when applying the extended DeRS compres-
sion to compress a vanilla upcycled MoE model, both the
universal FFN and the N MoE experts are treated as a whole
and decomposed into one expert-shared base weight and
N + 1 delta weights. Subsequently, sparsification or quanti-
zation techniques are applied to the N + 1 delta weights to
reduce redundancy. Similarly, when applying the extended
DeRS upcycling to convert a pre-trained dense model into
the MoE architecture, the universal FFN and the N MoE
experts are treated as a whole, sharing one base FFN and
introducing N +1 unique, parameter-efficient weights in the
form of sparse or low-rank matrixes.

A1. Extended DeRS Compression on Medical Task
Fig. S1 shows the performance of applying the extended
DeRS compression to two vanilla upcycled Med-MoE mod-
els on the medical multimodal task. The detailed results are
presented in Tab. S5 and Tab. S6. As we can see, even when
simultaneously compressing the universal FFN and MoE
experts, the extended DeRS-Sparsification with a 0.8 drop
rate and the extended DeRS-Quantization with a 4-bit width
can reduce the additional parameter count by 75% and 69%,
respectively, while maintaining performance.

Different from the results shown in Fig. 5, where only the
MoE experts were compressed, simultaneously compressing
the universal FFN and MoE experts leads to a slight per-
formance drop under extreme compression settings (0.99
drop rate or 1-bit width). This degradation occurs because
extreme compression of the universal FFN significantly im-
pacts the model’s output, as the universal FFN processes all
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Figure S1. Performance of applying the extended DeRS compres-
sion to compress two vanilla upcycled Med-MoE models respec-
tively. For each dataset, we report the average performance of the
open-set and closed-set.

input tokens. However, since the two dense models utilized
within the Med-MoE framework have been previously fine-
tuned on relevant yet non-overlapping medical multi-modal
datasets, the overall performance of upcycled MoE models
does not collapse under these extreme compression settings.

A2. Extended DeRS Upcycling on Medical Task
As shown in Tab. S1, when treating the construction of the
universal FFN and MoE experts as a whole, both of our
extended DeRS upcycling methods achieve comparable per-
formance to vanilla upcycling while introducing significantly
fewer additional parameters. For example, when achieving
the same performance on the Med-MoE-Phi architecture,
our extended DeRS-SM and DeRS-LM upcycling strategies
introduce only 5.18 million and 9.18 million additional pa-
rameters respectively, while vanilla upcycling introduces a
massive 3.36 billion parameters. These results highlight the
ability of our DeRS upcycling to achieve extremely efficient
upcycled MoE models.

A3. Extended DeRS Compression on Code Task
Fig. S2 shows the performance of applying the extended
DeRS compression to the vanilla upcycled Coder-MoE
model on the code generation task, with detailed results
presented in Tab. S3 and Tab. S4. As we can see, for the
delta weights obtained by the unified decomposition of the



Table S1. Performance comparison between vanilla upcycling and our extended DeRS upcycling on two Med-MoE models on the medical
multi-modal task. DeRS-SM† and DeRS-LM† denote the extended Sparse-Matrix-based and Low-rank-Matrix-based DeRS upcycling
respectively. Added Params represents the number of additional parameters of the upcycled MoE model compared to its corresponding
dense model.

MoE Model Upcycling
Method

Added
Params.

VQA-RAD SLAKE PathVQA Overall
Open Closed Open Closed Open Closed

Med-MoE-StableLM
(EMNLP 24)

Vanilla 1.66B 51.0 82.3 82.4 85.3 33.4 91.4 71.0
DeRS-SM† 2.17M 51.2 81.3 84.5 84.4 33.6 90.9 71.0
DeRS-LM† 5.63M 50.4 81.6 83.6 84.4 33.9 91.4 70.9

Med-MoE-Phi
(EMNLP 24)

Vanilla 3.36B 55.1 85.3 84.6 85.8 35.1 91.5 72.9
DeRS-SM† 5.18M 54.8 84.6 84.0 87.2 35.0 91.6 72.9
DeRS-LM† 9.18M 55.3 83.8 84.3 86.5 35.6 91.9 72.9

universal FFN and MoE experts, removing 40% of their ele-
ments or quantizing them to 4 bits can effectively eliminate
redundancy without degrading performance. However, since
the dense model utilized for constructing Coder-MoE has
not undergone any prior fine-tuning, excessive simultaneous
compression of both the universal FFN and MoE experts can
lead to a collapse in the performance of the vanilla upcycled
Coder-MoE model.

A4. Extended DeRS Upcycling on Code Task
As shown in Tab. S2, our extended DeRS upcycling remains
effective and extremely efficient on the code generation task.
For example, our extended DeRS-LM upcycling strategy
achieves an overall performance improvement of 0.7%, while
only introducing only 11.3 million additional parameters,
whereas vanilla upcycling introduces a significant 3.24 bil-
lion extra parameters. These results demonstrate that our
proposed DeRS upcycling method propels upcycled MoE
models towards a new level of efficiency.

B. Detailed Results of DeRS Compression
Detailed results of DeRS compression in the main body
are provided, namely Tab. S7 and Tab. S8 for the general
multi-modal task, Tab. S9 and Tab. S10 for the medical
multi-modal task, and Tab. S11 and Tab. S12 for the code
generation task.

C. Training settings
The detailed training hyper-parameters and our DeRS upcy-
cling hyper-parameters for experiments on three tasks are
provided in Tab. S13.

D. Recommended Application Choices
Based on extensive experiments, we empirically summarize
recommended application choices for different scenarios. If
the pre-trained dense model has undergone prior fine-tuning
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Figure S2. Performance of applying the extended DeRS compres-
sion to compress the vanilla upcycled Coder-MoE model. Hu-
manEval(+) represents the average performance of HumanEval
and HumanEval+, similarly for MBPP(+).

before upcycling, we recommend applying the sparsification-
based DeRS compression to efficiently compress the vanilla
upcycled MoE model, as well as utilizing sparse-matrix-
based DeRS upcycling to efficiently upcycle the dense model
into the MoE architecture for training. This is because, in
this case, the redundancy in the delta weights is extremely
high, and both sparsification and sparse matrixes can signif-
icantly reduce redundancy while maintaining performance.
Conversely, if the pre-trained dense model has not under-
gone any prior fine-tuning, we recommend employing the
quantization-based DeRS compression and the low-rank-
matrix-based DeRS upcycling, as these two methods can
effectively reduce redundancy while preserving global modi-
fication capabilities.

Since our proposed DeRS compression is based on the
assumption that MoE experts share the same pre-trained
weight initialization for the decomposition of experts and
compression of redundant delta weights, it is not applicable
to compressing MoE models trained from scratch. This is be-
cause training MoE models from scratch involves randomly
initializing the MoE experts, making it impossible to extract
redundant delta weights from the trained experts. Moreover,
although our proposed DeRS upcycling has the potential to
be used for training MoE models from scratch by randomly
initializing the expert-shared base FFN, its performance may
be limited due to insufficient model capacity.



Table S2. Performance comparison between vanilla upcycling and our extended DeRS upcycling on the code generation task. DeRS-SM† and
DeRS-LM† denote the extended Sparse-Matrix-based and Low-rank-Matrix-based DeRS upcycling respectively. Added Params represents
the number of additional parameters of the upcycled MoE model compared to its corresponding dense model.

MoE Model
Upcycling
Method

Added
Params.

HumanEval HumanEval+ MBPP MBPP+ Overall

Coder-MoE
(ACL 24)

Vanilla 3.24B 64.6 61.0 63.9 51.4 60.2
DeRS-SM† 406M 64.6 60.4 63.7 52.4 60.3
DeRS-LM† 11.3M 65.9 62.2 63.4 51.9 60.9

Table S3. Detailed results of applying the extended DeRS-Sparsification (with different drop rates) to compress the vanilla upcycled
Coder-MoE model on the code generation task. Added Params represents the number of additional parameters of the compressed MoE
model compared to its corresponding dense model.

Vanilla Upcycled
MoE Model

Drop
Rate

Added
Params.

HumanEval HumanEval+ MBPP MBPP+

Coder-MoE
(ACL 24)

0.0 3.24B 64.6 61.0 63.9 51.4
0.2 3.24B 63.4 59.8 64.7 52.9
0.4 2.43B 63.4 60.4 62.9 52.4
0.6 1.62B 61.0 57.9 61.2 50.6
0.8 0.81B 62.2 57.3 61.4 49.6
0.9 0.41B 58.5 54.3 55.4 44.6

0.99 0.04B 0.0 0.0 0.0 0.0

Table S4. Detailed results of applying the extended DeRS-Quantization (with different bit width) to compress the vanilla upcycled Coder-MoE
model on the code generation task. Added Params represents the number of additional parameters of the compressed MoE model compared
to its corresponding dense model.

Vanilla Upcycled
MoE Model

Bit
Width

Added
Params.

HumanEval HumanEval+ MBPP MBPP+

Coder-MoE
(ACL 24)

16 3.24B 64.6 61.0 63.9 51.4
8 2.03B 64.6 60.4 63.7 51.6
4 1.01B 63.4 60.4 63.7 52.1
2 0.51B 6.0 6.0 0.0 0.0
1 0.25B 0.0 0.0 0.0 0.0



Table S5. Detailed results of applying the extended DeRS-Sparsification (with different drop rates) to compress two vanilla upcycled
Med-MoE models on the medical multi-modal task. Added Params represents the number of additional parameters of the compressed MoE
model compared to its corresponding dense model.

Vanilla Upcycled
MoE Model

Drop
Rate

Added
Params.

VQA-RAD SLAKE PathVQA
Open Closed Open Closed Open Closed

Med-MoE-StableLM
(EMNLP 24)

0.0 1.66B 51.0 82.3 82.4 85.3 33.4 91.4
0.2 1.66B 51.0 82.3 82.5 85.3 33.3 91.4
0.4 1.25B 50.8 82.3 82.5 85.1 33.2 91.3
0.6 0.83B 50.3 82.0 82.4 85.6 33.1 91.4
0.8 0.42B 48.6 82.3 82.7 85.3 33.2 91.5
0.9 0.21B 48.8 82.3 82.4 85.3 33.0 91.4
0.99 0.02B 42.5 79.0 81.7 85.3 32.3 91.3

Med-MoE-Phi
(EMNLP 24)

0.0 3.36B 55.0 85.3 84.6 85.8 35.1 91.5
0.2 3.36B 55.0 84.9 84.7 85.8 35.1 91.5
0.4 2.52B 55.0 85.3 85.0 85.8 35.1 91.5
0.6 1.68B 55.1 84.9 84.8 85.8 34.9 91.6
0.8 0.84B 55.1 84.9 84.9 85.3 35.0 91.3
0.9 0.42B 55.3 84.9 84.8 85.3 35.2 91.4
0.99 0.21B 57.0 85.7 83.7 85.1 34.9 91.2

Table S6. Detailed results of applying the extended DeRS-Quantization (with different bit width) to compress two vanilla upcycled Med-MoE
models on the medical multi-modal task. Added Params represents the number of additional parameters of the compressed MoE model
compared to its corresponding dense model.

Vanilla Upcycled
MoE Model

Bit
Width

Added
Params.

VQA-RAD SLAKE PathVQA
Open Closed Open Closed Open Closed

Med-MoE-StableLM
(EMNLP 24)

16 1.66B 51.0 82.3 82.4 85.3 33.4 91.4
8 1.04B 51.0 82.3 82.5 85.3 33.3 91.4
4 0.52B 50.8 82.3 82.5 85.1 33.2 91.3
2 0.26B 51.5 80.1 82.8 86.0 32.4 91.1
1 0.13B 33.7 77.6 66.7 80.3 23.4 87.8

Med-MoE-Phi
(EMNLP 24)

16 3.36B 55.0 85.3 84.6 85.8 35.1 91.5
8 2.10B 55.0 85.3 84.6 85.8 35.1 91.5
4 1.05B 54.9 85.3 84.9 86.0 35.1 91.5
2 0.52B 56.7 85.7 83.7 85.3 33.5 91.4
1 0.26B 43.6 79.4 64.2 79.8 20.1 86.6



Table S7. Detailed results of applying DeRS-Sparsification (with different drop rates) to compress three vanilla upcycled MoE-LLaVA
models on the general multi-modal task. Added Params represents the number of additional parameters of the compressed MoE model
compared to its corresponding dense model.

Vanilla Upcycled
MoE Model

Drop
Rate

Added
Params. VQAv2 GQA VQAT

MoE-LLaVA-StableLM
(ICML 24)

0.0 1.24B 76.3 60.6 50.2
0.2 1.33B 76.4 60.8 50.1
0.4 1.00B 76.4 60.8 50.2
0.6 0.66B 76.3 60.7 50.1
0.8 0.33B 76.3 60.7 50.2
0.9 0.17B 76.3 60.5 50.0
0.99 0.02B 74.8 59.4 47.4

MoE-LLaVA-Qwen
(ICML 24)

0.0 1.22B 76.2 61.2 48.1
0.2 1.30B 76.2 61.3 47.7
0.4 0.97B 76.2 61.1 48.0
0.6 0.65B 76.2 61.3 47.5
0.8 0.32B 76.1 61.0 47.8
0.9 0.16B 76.1 61.1 47.5
0.99 0.02B 73.9 59.3 42.7

MoE-LLaVA-Phi
(ICML 24)

0.0 2.52B 77.5 61.4 50.8
0.2 2.68B 77.5 61.1 50.8
0.4 2.01B 77.5 61.1 50.9
0.6 1.34B 77.4 61.4 50.9
0.8 0.67B 77.5 61.4 51.0
0.9 0.34B 77.4 61.3 50.9
0.99 0.03B 76.9 60.6 50.2

Table S8. Detailed results of applying DeRS-Quantization (with different bit width) to compress three vanilla upcycled MoE-LLaVA models
on the general multi-modal task. Added Params represents the number of additional parameters of the compressed MoE model compared to
its corresponding dense model.

Vanilla Upcycled
MoE Model

Bit
Width

Added
Params. VQAv2 GQA VQAT

MoE-LLaVA-StableLM
(ICML 24)

16 1.24B 76.3 60.6 50.2
8 0.83B 76.4 60.4 50.2
4 0.42B 76.3 60.6 50.1
2 0.21B 76.2 60.5 50.7
1 0.10B 74.1 55.8 48.1

MoE-LLaVA-Qwen
(ICML 24)

16 1.22B 76.2 61.2 48.1
8 0.81B 76.2 61.1 48.0
4 0.41B 76.2 61.0 47.9
2 0.20B 76.1 60.9 48.7
1 0.10B 74.4 57.5 47.8

MoE-LLaVA-Phi
(ICML 24)

16 2.52B 77.5 61.4 50.8
8 1.68B 77.5 61.2 51.1
4 0.84B 77.5 61.2 50.8
2 0.42B 77.5 61.4 50.7
1 0.21B 75.9 58.8 49.8



Table S9. Detailed results of applying DeRS-Sparsification (with different drop rates) to compress two vanilla upcycled Med-MoE models
on the medical multi-modal task. Added Params represents the number of additional parameters of the compressed MoE model compared
to its corresponding dense model. The light-gray Added Params denotes the additional parameters introduced by the universal FFN layers
that are not considered as experts of MoE layers.

Vanilla Upcycled
MoE Model

Drop
Rate

Added
Params.

VQA-RAD SLAKE PathVQA
Open Closed Open Closed Open Closed

Med-MoE-StableLM
(EMNLP 24)

0.0 0.42B+1.24B 51.0 82.3 82.4 85.3 33.4 91.4
0.2 0.42B+1.33B 50.6 82.3 82.3 85.3 33.3 91.3
0.4 0.42B+1.00B 50.8 82.3 82.4 85.3 33.3 91.2
0.6 0.42B+0.66B 50.6 82.3 82.4 85.3 33.2 91.4
0.8 0.42B+0.33B 49.8 82.7 82.9 85.6 33.3 91.3
0.9 0.42B+0.17B 49.9 82.0 82.6 85.6 33.2 91.3

0.99 0.42B+0.02B 49.4 80.9 81.6 85.3 32.9 91.4

Med-MoE-Phi
(EMNLP 24)

0.0 0.84B+2.52B 55.0 85.3 84.6 85.8 35.1 91.5
0.2 0.84B+2.68B 55.0 85.3 84.7 85.8 35.0 91.5
0.4 0.84B+2.01B 55.0 85.3 84.6 86.0 35.1 91.5
0.6 0.84B+1.34B 55.0 85.3 84.7 86.0 35.1 91.4
0.8 0.84B+0.67B 55.0 84.6 84.9 85.6 35.2 91.5
0.9 0.84B+0.34B 55.2 84.6 84.9 85.1 35.0 91.6

0.99 0.84B+0.03B 55.7 84.9 84.0 85.6 35.0 91.5

Table S10. Detailed results of applying DeRS-Quantization (with different bit width) to compress two vanilla upcycled Med-MoE models on
the medical multi-modal task. Added Params represents the number of additional parameters of the compressed MoE model compared to
its corresponding dense model. The light-gray Added Params denotes the additional parameters introduced by the universal FFN layers that
are not considered as experts of MoE layers.

Vanilla Upcycled
MoE Model

Bit
Width

Added
Params.

VQA-RAD SLAKE PathVQA
Open Closed Open Closed Open Closed

Med-MoE-StableLM
(EMNLP 24)

16 0.42B+1.24B 51.0 82.3 82.4 85.3 33.4 91.4
8 0.42B+0.83B 50.8 82.3 82.3 85.1 33.3 91.4
4 0.42B+0.42B 50.8 82.3 82.3 85.3 33.3 91.3
2 0.42B+0.21B 50.5 82.3 82.5 85.3 32.9 91.4
1 0.42B+0.10B 43.3 80.5 79.5 84.1 31.2 91.1

Med-MoE-Phi
(EMNLP 24)

16 0.84B+2.52B 55.0 85.3 84.6 85.8 35.1 91.5
8 0.84B+1.68B 55.0 85.3 84.6 85.8 35.1 91.5
4 0.84B+0.84B 54.9 85.3 84.9 86.3 35.1 91.5
2 0.84B+0.42B 54.6 85.0 84.6 85.6 34.8 91.4
1 0.84B+0.21B 54.0 83.1 80.2 83.2 31.6 90.7



Table S11. Detailed results of applying DeRS-Sparsification (with different drop rates) to compress the vanilla upcycled Coder-MoE model
on the code generation task. Added Params represents the number of additional parameters of the compressed MoE model compared to its
corresponding dense model. The light-gray Added Params denotes the additional parameters introduced by the universal FFN layers that are
not considered as experts of MoE layers.

Vanilla Upcycled
MoE Model

Drop
Rate

Added
Params.

HumanEval HumanEval+ MBPP MBPP+

Coder-MoE
(ACL 24)

0.0 0.81B+2.43B 64.6 61.0 63.9 51.4
0.2 0.81B+2.60B 63.4 60.4 63.7 51.4
0.4 0.81B+1.95B 63.4 59.8 63.9 51.6
0.6 0.81B+1.30B 64.0 59.8 64.4 53.1
0.8 0.81B+0.65B 62.2 59.1 63.7 51.9
0.9 0.81B+0.32B 62.2 57.3 63.4 51.6

0.99 0.81B+0.03B 56.7 53.0 56.1 45.6

Table S12. Detailed results of applying DeRS-Quantization (with different bit width) to compress the vanilla upcycled Coder-MoE model on
the code generation task. Added Params represents the number of additional parameters of the compressed MoE model compared to its
corresponding dense model. The light-gray Added Params denotes the additional parameters introduced by the universal FFN layers that are
not considered as experts of MoE layers.

Vanilla Upcycled
MoE Model

Bit
Width

Added
Params.

HumanEval HumanEval+ MBPP MBPP+

Coder-MoE
(ACL 24)

16 0.81B+2.43B 64.6 61.0 63.9 51.4
8 0.81B+1.62B 64.0 60.4 63.7 51.6
4 0.81B+0.81B 63.4 59.8 63.7 52.1
2 0.81B+0.41B 64.0 61.0 62.4 51.1
1 0.81B+0.20B 9.1 9.1 6.8 6.3

Table S13. Detailed training hyper-parameters and our DeRS upcycling hyper-parameters for experiments on three tasks. DeRS-SM Rate
denotes the sparse rate for the Sparse-Matrix-based DeRS upcycling while DeRS-LM Rate denotes the rank for the Low-rank-Matrix-based
DeRS upcycling. † denotes the extended DeRS upcycling implementation.

Config
Task

General Multi-Modal Medical Multi-Modal Code Generation

Training Epochs 1 9 4
Learning rate 2e-5 2e-5 5e-5

Learning rate schedule Cosine Cosine Linear
Training Batch size per GPU 4 8 4
Gradient Accumulation Steps 4 2 2

Number of GPU 8 × A100 (80G) 4 × A100 (80G) 8 × A100 (80G)
Precision Bfloat16 Bfloat16 Bfloat16

DeRS-SM Rate 0.9999 0.9999 0.9
DeRS-LM Rank 1 1 4
DeRS-SM† Rate - 0.999 0.9
DeRS-LM† Rank - 4 4
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