
Decision SpikeFormer: Spike-Driven Transformer for Decision Making

Supplementary Material

A. Notation and Definitions
In this section, we provide a summary of the notation and
definitions used throughout the paper and appendix, as out-
lined in Table 1.

B. Spiking Neuron Network
In this section, we present the surrogate gradient training
method used in this work and describe how it is integrated
into the backpropagation process for optimizing our loss
function in DSFormer. We also provide an overview of ad-
ditional Related Work in Offline RL and spike-driven Trans-
formers.

B.1. Surrogate Gradient and Loss Backpropagation
Surrogate Gradient The non-differentiable dynamics of
spiking neural networks make traditional backpropagation
algorithms unsuitable for direct application. To address this,
surrogate gradient methods have been developed to approx-
imate the gradients of SNNs [20, 21, 33], enabling effec-
tive training. In our work, we adopt the surrogate gradient
method proposed by [33], formulated as:

∂St

∂U t
≈ 1

∆
sign

(∣∣U t − Uth

∣∣ ≤ ∆

2

)
(1)

where ∆ is a hyperparameter used to ensure the gradient
integral is 1 and to control the slope of the function. We set
∆ = 0.5 in our experiments.

Loss Backpropagation in DSFormer We inherit the loss
function in the Decision Transformer to our work:

L =
1

L

L∑
l=1

(âl − al)
2 (2)

âl = Whead(
1

T

T∑
t=1

St
l,last) + bhead (3)

where âl is the predicted action at iteration step l, al is the
ground truth action at iteration step l, St

l,last is the spike
output of the last Spike Neuron at time step t, Whead and
bhead are the weight matrix and bias of Prediction Head, re-
spectively, and L is the total iteration steps. Following the
surrogate gradient training method, the loss backpropaga-
tion of spiking neural networks can be formulated as:

∂L
∂Whead

=

L∑
l=1

∂L
∂âl

∂âl
∂Whead︸ ︷︷ ︸

constant

(4)

For other linear layers, the input X undergoes a linear trans-
formation WX before being fed into spiking neurons, re-
sulting in the corresponding membrane potential U and
spikes S. According to [23], the gradient of the loss func-
tion with respect to the weight matrix W can be computed
as:

∂L
∂W

=
∑
i

∂L
∂Si

∂Si

∂U i︸︷︷︸
constant

∑
j≤i

∂U i

∂W j
(5)

∑
j≤i

∂U i

∂W j
=

∂U i

∂W i︸ ︷︷ ︸
constant

+
∂U i

∂U i−1︸ ︷︷ ︸
constant

∑
j≤i−1

∂U i−1

∂W j
(6)

where i is the time step, j is the time step before i. W
shares the same weights across all time steps, i.e., W 1 =
W 2 = · · · = WT . Where ∂L

∂Si represents the derivative
of the loss function with respect to Si at time step i, which
can be computed using the standard chain rule, and ∂Si

∂Ui can
be computed using the surrogate gradient Eq. (1). ∂Ui

∂Ui−1

and ∂Ui

∂W i can be directly obtained from the dynamics of LIF
neurons, and

∑
j≤i−1

∂Ui−1

∂W j can be computed recursively
based on the Eq. (6).

B.2. Related Work
Offline RL Offline reinforcement learning (RL) trains
policies entirely on static offline datasets, eliminating the
need for online interactions with the environment. This
paradigm is particularly valuable in scenarios where direct
exploration is constrained by safety, energy, or resource lim-
itations.
Value-based Approaches Early methods like behavior
cloning (BC) [30] mapped states to actions using expert
demonstrations but suffered from limited data diversity and
compounding errors caused by distributional mismatch. To
address these limitations, value-based methods utilizing
value functions were developed and can be broadly catego-
rized into policy constraint and regularization techniques.
Policy constraints in offline RL ensure the learned policy
remains close to the behavioral policy, improving reliabil-
ity when extrapolating from static datasets [9, 16, 18, 25].
Methods like Batch-Constrained Q-learning (BCQ) [9] con-
strain actions to those observed in the dataset using pertur-
bation models. Regularization methods [17, 19, 34] incor-
porate penalty terms to shape policy behaviors without ex-
plicitly estimating the behavioral policy. For example, Con-
servative Q-Learning (CQL) [19] mitigates overestimation
and improves value function stability by regularizing value
estimates toward lower bounds.



Table 1. Notation and Definitions

Notation Description Notation Description
t Time step for a LIF neuron T Total time steps for a LIF neuron
U t Membrane potential before spike emission It Input current at time step t
Ht Membrane potential after spike emission St Spike output at time step t
γ Decay factor for membrane potential Uth Threshold for membrane potential
Ureset Reset membrane potential Hea Heaviside step function
∆ Hyperparameter for surrogate gradient l Iteration step in RL environment
L Total iteration steps M Number of Decoder Blocks
N Context length B Batch Size
τ Trajectory sequence al Action at iteration step l
D Channel dimension rl Reward at iteration step l

sl State at iteration step l R̂l Estimated return-to-go at iteration step l
Rl Return-to-go at iteration step l Il Model input at iteration step l
SN Spiking neuron layer Emb Embedding Layer
K Key matrix for self-attention Q Query matrix for self-attention
Wq Query weight matrix V Value matrix for self-attention
Wv Value weight matrix Wk Key weight matrix
dk Dimensionality of key vector Qt Query vector at time step t
Kt Key vector at time step t V t Value vector at time step t
K⊤ Transposed key matrix P Positional bias matrix
P⊤ Transposed positional bias Pij Bias for the i-th and j-th tokens
Qi i-th query vector Kj j-th key vector
Vj j-th value vector S Local window size of PSSA
u Mean of X σ2 Variance of X
ϵ Small constant for tdBN α Scaling factor for membrane potential
β Shift parameter λ Scale parameter
Tp Predetermined training step Tcur Current training step
θ Scaling factor for PTBN L Loss function
A Attention scores sign Signum function
Dsrc Source dimension Dtgt Target dimension
Rm Sum of average spike rates R̂ Sum of estimated spike rates

Value-free Approaches Value-free approaches do not de-
pend on value functions. Imitation learning [13], a key
example, trains policies to mimic the behavioral policy
based on collected trajectories, minimizing discrepancies
between the learned policy and demonstrated behavior, nor-
mally through supervised learning methods like BC. How-
ever, BC often delivers suboptimal performance on datasets
with mixed-quality samples due to the tradeoff between data
quantity and quality. Offline RL extends imitation learning
by extracting useful transitions from suboptimal datasets
through filtering [3, 6] or weighting [27, 31]. For exam-
ple, some methods prioritize trajectories with higher returns
or assign greater weights to advantageous state-action pairs
using estimated advantages.

Conditional Sequence Modeling Recent advances in of-
fline RL have redefined policy learning as a Conditional

Sequence Modeling (CSM) problem, framing the policy
generation as a supervised learning task over trajectory se-
quences [4, 7, 11, 14, 24]. This approach, exemplified
by Decision Transformer (DT)[5], leverages transformers
to model long-term dependencies by conditioning actions
on past states and future returns, bypassing the need for
bootstrapping. By treating trajectories as sequence pre-
diction problems, CSM-based methods effectively capture
temporal dependencies and optimize for long-term rewards
without iterative updates. Recently, some studies pointed
out that while CSM excels in trajectory modeling, it faces
challenges with the “stitching” property, where optimal se-
quences are synthesized from suboptimal trajectories. They
address this issue by integrating value-based regularization
into CSM, as seen in recent Q-value augmented transform-
ers [12, 32] to balance trajectory modeling with optimal ac-



tion selection. In this work, we focus on designing an SNN
model within the DT framework without adding any extra
value-based regularization.

Spike-driven Transformers Transformer-based Spiking
Neural Networks (SNNs) have emerged as an innovative ap-
proach, combining the energy efficiency of spiking neurons
with the advanced capabilities of transformers in both vi-
sion and sequence modeling tasks.
Vision Tasks Pioneering works like Spikformer [43] in-
troduced a spiking self-attention mechanism (SSA) that
employs sparse, spike-based Query, Key, and Value rep-
resentations without softmax, aligning with SNN con-
straints. Spikformer demonstrated remarkable perfor-
mance on ImageNet-1k using only 4 time steps, show-
casing the potential of transformer-based SNNs. Spik-
ingformer [40] further refined residual connections to im-
prove energy efficiency, avoid floating-point multiplications
in synaptic computing, and reduce computational com-
plexity. Similarly, CML [41] introduced SNN-optimized
downsampling to mitigate imprecise gradient backprop-
agation in deep SNNs, enhancing the performance of
transformer-based SNNs like Spikformer on ImageNet.
Spike-driven Transformers [37] proposed linear-complexity
self-attention mechanisms relying on masks and addi-
tion operations, significantly reducing computational de-
mands. Meta-SpikeFormer [38] expanded these advance-
ments by introducing three distinct Spike-Driven Self-
Attention (SDSA) modules and combining Conv-based and
Transformer-based SNN blocks. This meta-architecture
achieved state-of-the-art performance across diverse vision
tasks, including classification, detection, and segmenta-
tion, demonstrating its versatility as a unified SNN back-
bone. Recent models like QKFormer [42] and SpikingRes-
former [26] have further optimized efficiency and scalabil-
ity. QKFormer uses hierarchical Q-K self-attention to im-
prove token and channel representations for complex tasks,
while SpikingResformer integrates residual learning with
dual spike attention mechanisms to efficiently scale across
feature hierarchies.
Sequence Modeling Tasks SNN Transformers have shown
promise in some sequential tasks like natural language
processing (NLP). SpikeBERT [22] adapted Spikformer’s
architecture for NLP by replacing convolution modules
with linear transformations and using word embeddings
for token representations. SpikeGPT [44] extended SNNs
to language generation, utilizing Spiking RWKV to re-
place self-attention, reducing computational complexity
from quadratic to linear. SNN-BERT [28] introduced bidi-
rectional spiking neurons for improved temporal modeling,
bridging the gap between spiking and ANN-based mod-
els in text classification tasks. However, these methods
still involve floating-point multiplications in critical com-

ponents such as normalization, self-attention computations,
and frameworks like knowledge distillation, limiting their
adherence to pure spike-based computing principles.

C. Computational Complexity Analysis

C.1. Step-by-step Spiking Self-Attention

Given the input X ∈ RN×D, where N is the sequence
length and D is the channel dimension: At each time step
t, the input Xt ∈ RN×D is transformed into Q, K, and V
matrices in RN×D through three separate linear projections.
The attention scores A ∈ RN×N are then calculated via ma-
trix multiplication of Q and K, with a computational com-
plexity of O(DN2). A masking operation is applied to pre-
vent the model from attending to future tokens, contributing
an additional computational complexity of O(N2). Subse-
quently, the output Z ∈ RN×D is obtained by multiplying
A with V , which also has a computational complexity of
O(DN2). Thus, the overall computational complexity of
the SSSA mechanism for T time steps is O(TDN2).

C.2. Temporal Spiking Self-Attention

We observe that the Q, K, and V representations for all
T time steps are already computed within the spiking neu-
rons before the self-attention operation. Consequently, we
can concatenate the Q, K, and V matrices along the tempo-
ral dimension and perform the self-attention operation just
once, rather than T separate times. After concatenation,
the dimensions of Q, K, and V become RN×TD. Impor-
tantly, only Q, K, and V are concatenated, while X re-
mains unchanged. This ensures that the weight matrices
used to compute Q, K, and V retain their original dimen-
sions. Correspondingly, the attention score A ∈ RN×N is
calculated through the dot product of Q and K, with a com-
putational complexity of O(TDN2). The mask operation
adds a computational complexity of O(N2). Finally, the
output Z ∈ RN×TD is obtained by multiplying A with V ,
which also has a computational complexity of O(TDN2).
Thus, the overall computational complexity of the TSSA is
O(TDN2).

C.3. Positional Spiking Self-Attention

Similar to TSSA, we concatenate Q, K, and V along the
time dimension. To account for the Markov locality, we in-
troduce a positional bias matrix P ∈ RN×N , where each
element Pij represents the bias between position i and po-
sition j. A local window size S is defined, such that each
row of P contains at most S non-zero elements. Instead of
using matrix multiplication, we implement PSSA through
element-wise multiplication. To analyze the computational
complexity, we provide explanations in both vector form
and its equivalent matrix form.



In the vector form operation, the computational com-
plexity of Kj ⊙Vj is O(TD). Similarly, the broadcast mul-
tiplication of Pij and KVj also incurs a computational com-
plexity of O(TD). During the summation process for j = 1
to N , it is important to note that the number of non-zero ele-
ments in Pi is at most S. Consequently, the number of mul-
tiplication and addition operations required is O(2STD)
and O(STD), respectively. Finally, after applying element-
wise multiplication with Qi, the computational complexity
for producing the final output Zi is O(TD). Therefore, for
all N result vectors, the total computational complexity is
O(N(3STD + TD)) = O(STDN).

In the equivalent matrix form, we first compute the
element-wise multiplication of the K matrix and the V ma-
trix to generate the KV matrix. This step has a computa-
tional complexity of O(TDN). Next, for each row vector
of P , we perform a broadcast element-wise multiplication
with the KV matrix and sum along the relevant dimension
to obtain an intermediate vector. All intermediate vectors
are then concatenated together. Since P is a sparse matrix,
the computational complexity for this step is O(STDN).
Finally, we apply element-wise multiplication with the Q
matrix to compute the final output matrix, which also has a
computational complexity of O(TDN). Thus, the overall
computational complexity of PSSA is O(STDN).

D. Implementation Details of PTBN
D.1. Representations of PTBN
The Progressive Threshold-dependent Batch Normaliza-
tion(PTBN) we proposed implements the collaborative
training of tdLN and tdBN through the following formula:

PTBN(X) = θ tdLN(X) + (1− θ) tdBN(X) (7)

where θ is the scaling factor for PTBN, and X ∈
RB×N×T×D is the input of PTBN. If we do not consider
the scale and shift parameters of tdLN and tdBN, we can
expand Eq. (7) as:

αUth

θ
(Xijkg − µijk)√

σ2
ijk + ϵ

+ (1− θ)
(Xijkg − µg)√

σ2
g + ϵ

 (8)

In this formula, normalization is performed along the four
dimensions of the input B,N, T,D simultaneously. Taking
the MuJoCo environment as an example, at the beginning
of training, we set θ = 1, causing the model to primar-
ily use tdLN, which helps it converge effectively. As train-
ing progresses, θ is gradually decreased, allowing the model
to incrementally adapt to tdBN. When training reaches the
specified stage Tp, θ is decreased to 0, the model fully tran-
sitions to using tdBN for the final phase of adaptation. In
the inference stage, we keep θ = 0, causing PTBN to de-
generate into tdBN.

The parameters α and Uth map the input from the stan-
dard normal distribution N(0, 1) to the normal distribution
N(0, (αUth)

2) . The parameter α is set to 1 in the serial
network structure and set to 1/

√
n for a parallel network

structure with n branches [39]. We change the learnable
scale λ and shift β parameters of BatchNorm and Layer-
Norm to initialize them as αUth and 0, respectively, in order
to implement PTBN more concisely.

D.2. PTBN Fusion in Inference
During the inference stage, we set θ = 0, causing PTBN to
simplify to tdBN. As a result, PTBN can be integrated into
the linear layer using the same approach as tdBN [39], as
shown below:

W ′ = λ
αUth√
σ2
D + ϵ

W (9)

b′ = λ
αUth (b− uD)√

σ2
D + ϵ

+ β (10)

Here, W and W ′, along with b and b′, represent the weight
matrix and bias term of PTBN before and after fusion, re-
spectively. The parameters λ and β correspond to the scal-
ing and offset factors of BatchNorm. The terms uD and
σ2
D denote the mean and variance of tdBN computed across

the entire dataset. As previously mentioned, we can ini-
tialize αUth as the learnable scale parameter λ of standard
BatchNorm, thereby omitting the need for an explicit αUth

transformation in Eqs. (9) and (10).

E. Experimental Setup
E.1. Decision Transformer Setup
In DSFormer, the PTBN layer functions as a BatchNorm
during the inference stage, relying on the alignment of in-
put data feature dimensions. To accommodate this, we en-
code state, action, and return-to-go tuples as a single token.
While in the original DT[5], state, return-to-go, and action
are treated as three consecutive tokens during training, with
the model predicting the next token based on this sequence.
For a fair comparison, we also evaluate the DT variant that
uses the same tokenization method as DSFormer, as pro-
vided in [29], and report the best results from the two DT
models discussed in the paper. We conduct all experiments
using four NVIDIA A100 Tensor Core GPUs.

E.2. Hyperparameters
The hyperparameters shared by DT and DSFormer in our
experiments are summarized in Table 2. For the hidden
dimension, we select the optimal value from {128, 256}.
Since the human dataset and medium-replay dataset are rel-
atively small, their batch sizes are set to 8 and 16, respec-
tively, while the batch size for other datasets is set to 128.



Additionally, the context length is set to 32 for the human
dataset and 100 for the other datasets.

DT uses GeLU as its non-linear activation function,
whereas DSFormer replaces traditional activation functions
with spiking neurons. Each spiking neuron is configured
with a threshold Uth of 1.0 and a membrane potential decay
factor γ of 0.25. Additionally, the spiking neuron operates
over a total of T = 4 time steps. SpikeGPT and SpikeBERT
use the same configuration as DSFormer. FCNet uses the
configuration from the original paper [29].

Table 2. Hyperparameter settings.

Hyperparameter Value

Number of layers 4
Hidden dimension {128, 256}
Context length N 32, human

100, otherwise
Batch size 8, human

16, medium-replay
128, otherwise

Return-to-go conditioning 1.2, expert
1.15, medium-expert
0.8, human, cloned
1.0, otherwise

Optimizer Lion
LR scheduler get cosine schedule with warmup
Learning rate 5× 10−3

Epoch 50
Weight decay 10−4

Gradient clip 1.0
Learning rate decay Linear warmup for first 20% steps

E.3. Parameters

We present the number of parameters for DT and DSFormer
on the halfcheetah-medium-expert dataset, as shown in Ta-
ble 3. For PSSA, although the positional bias P ∈ RN×N

has the shape N×N , only S elements in each row are valid.
We set S to 8 in all tasks, and the parameter count of PSSA
during inference is nearly identical to that of DT.

Table 3. Number of parameters on halfcheetah-expert dataset. The
Percentage column indicates the parameter ratio of each model
relative to the DT model during the inference stage.

Model Training Inference Percentage

DT 797575 797575 100.00%
TSSA 842399 795014 99.68%
PSSA 845599 798214 100.08%

Table 4. The FLOPs of various operations. Rm and R̂ refer to the
sum of spike firing rates across different spiking matrices.

DT TSSA PSSA
Embedding DsrcDN DsrcDN DsrcDN
Q,K, V 3D2N 3TD2NRm 3TD2NRm

f(Q,K, V ) (2D + 3)N2 TDN2R̂ TSDN
Attn Linear D2N TD2NRm TD2NRm

MLP Linear1 4D2N 4TD2NRm 4TD2NRm

MLP Linear2 4D2N 4TD2NRm 4TD2NRm

Prediction Head DtgtDN DtgtDN DtgtDN

F. Theoretical Energy Evaluation
This section details the energy evaluation of DSFormer,
building upon the theoretical estimation method proposed
in [38].

SNNs have garnered significant attention due to their low
power consumption and brain-inspired computing capabil-
ities, which are made possible by their spiking-driven na-
ture. In the case of a spiking-driven matrix (a matrix with
elements limited to 0 or 1), element-wise multiplication is
effectively a mask operation, which incurs negligible en-
ergy consumption. And matrix multiplication can be trans-
formed into sparse addition operations and efficiently im-
plemented on neuromorphic chips using addressable addi-
tion techniques [8]. Our energy consumption formula is as
follows:

EANN = FLOPs × EMAC (11)
ESNN = FLOPs × EAC (12)

Here, EMAC represents the energy consumption of the
Multiply-Accumulate (MAC) operation in ANN, and EAC
denotes the energy consumption of the Accumulate (AC)
operation in SNN. According to [10], EMAC = 4.6 pJ and
EAC = 0.9 pJ. It is important to note that our calculation
accounts for both the spiking firing rate and the total time
steps of the spiking neurons, ensuring a comprehensive esti-
mation of FLOPs. The FLOPs of our model are summarized
in Table 4, while the spiking firing rates for each layer are
detailed in Table 5. Additionally, the energy consumption
of each model component is presented in Table 6.

In SpikeBERT, residual connections improperly intro-
duce integer signals, which disrupt spiking characteristics
and prevent matrix multiplication from being converted into
sparse addition operations. Furthermore, the introduction of
an additional time dimension T leads to higher energy con-
sumption compared to the Decision Transformer (DT).

G. Ablations
SNN timestep T . We conduct ablation studies on the to-
tal time steps T of the spiking neuron in the spiking self-



Table 5. Average spiking firing rates of various spike matrices on
the hopper-medium-replay dataset.

Block Layer TSSA PSSA

Block 1

Q,K, V 0.33570 0.39100
f(Q,K, V ) 0.13363 N/A
Attn-Linear 0.75925 0.11184
MLP-Linear1 0.33037 0.38646
MLP-Linear2 0.24257 0.24093

Block 2

Q,K, V 0.31161 0.36852
f(Q,K, V ) 0.12909 N/A
Attn-Linear 0.80575 0.13899
MLP-Linear1 0.31651 0.36385
MLP-Linear2 0.19529 0.20666

Block 3

Q,K, V 0.32299 0.36977
f(Q,K, V ) 0.14131 N/A
Attn-Linear 0.82538 0.18663
MLP-Linear1 0.32341 0.35882
MLP-Linear2 0.20368 0.24399

Block 4

Q,K, V 0.33147 0.36555
f(Q,K, V ) 0.13986 N/A
Attn-Linear 0.84145 0.34599
MLP-Linear1 0.32639 0.36521
MLP-Linear2 0.19972 0.23693

Table 6. Energy consumption of various components of the model
(µJ) on hopper-medium-replay dataset.

DT TSSA PSSA
Embedding 0.9 0.9 0.9
Self-Attention 168.2 44.6 31.0
MLP 241.2 50.4 56.7
Prediction Head 0.2 0.2 0.2
Total 410.5 96.1 88.8

attention mechanism on MuJoCo-Hopper tasks. A smaller
T can lead to lower energy consumption but tends to cause
performance degradation, whereas a larger T increases
training time and energy consumption without delivering
substantial performance benefits. To balance this trade-off
between energy efficiency and performance, we set T = 4
in our experiments. The results are shown in Table 7.

Local window size S in PSSA. We conduct ablation stud-
ies on the local window size S in the Positional Spik-
ing Self-Attention (PSSA) on MuJoCo-Hopper tasks. As
shown in Table 8, an overly small S may limit access to
sufficient temporal information, while increasing the win-

dow size allows for decisions with a broader horizon but
may diminish the influence of local information. We se-
lected S = 8, which not only achieves the best performance
but also maintains relatively low energy consumption.

Table 7. Ablation studies on SNN timestep T .

T=1 T=2 T=4 T=8

hopper-medium-expert 109.3 109.7 110.9 109.7
hopper-medium 63.7 66.6 74.1 74.4
hopper-medium-replay 83.7 92.4 96.3 91.1
Average 85.6 89.6 93.8 91.7

Table 8. Ablation studies on local window size in PSSA.

S=1 S=8 S=32 S=100

hopper-medium-expert 110.4 110.9 110.7 109.7
hopper-medium 63.2 74.1 66.9 67.7
hopper-medium-replay 90.9 96.3 94.7 84.7
Average 88.1 93.8 90.8 87.4

H. Visualization

We visualize DT and DSFormer results on the medium-
replay dataset in MuJoCo and the expert dataset in Adroit
(Fig. S1). We will release codes for reproducing all experi-
ments results in the paper.

Figure S1. Visualization Results: The first and third rows represent
DSFormer, while the second and fourth rows represent DT.



MuJoCo Tasks DT WT EDT DC SAN Spike-LM -V1 -V2 TSSA PSSA
halfcheetah-m-e 86.8 93.2 48.5 91.3 85.1 75.6 91.6 91.1 91.3 91.5
walker2d-m-e 108.1 109.6 108.4 108.4 110.6 91.4 73.8 108.5 108.6 108.9
hopper-m-e 107.6 110.9 110.4 107.5 105.8 95.0 104.3 61.5 111.0 110.9
halfcheetah-m 42.6 43.0 42.5 43.2 42.6 42.5 42.8 42.7 42.5 42.8
walker2d-m 74.0 74.8 72.8 77.3 81.8 78.0 77.8 75.4 72.4 75.2
hopper-m 67.6 63.1 63.5 69.3 63.3 54.1 54.8 56.1 64.6 74.1
halfcheetah-m-r 36.6 39.7 37.8 40.1 40.9 35.9 35.0 1.4 38.7 38.8
walker2d-m-r 66.6 67.9 74.8 76.9 71.7 71.9 29.2 20.5 66.0 71.0
hopper-m-r 82.7 88.9 89.0 93.2 60.1 45.4 47.1 30.7 85.8 96.3
Average 74.7 78.7 72.0 78.6 73.4 65.5 61.8 54.2 75.7 78.8

Table 9. More results on MuJoCo domain.

I. More Results
We incorporated the most recent and sophisticated DT-
based methods (WT [2], EDT [35], DC [15]) into our study,
primarily referencing the results reported in the original pa-
pers. For DC, we reproduced the experiments using the offi-
cial implementation within our experimental framework to
facilitate more comprehensive comparisons. Furthermore,
we included and SNN-based models (SpikeLM [36], Spike-
driven Transformer V1 [37] & V2 [38] on the MuJoCo do-
main. For SpikeLM, we modify the official implementation
to adopt a decoder-only architecture, enabling its applica-
tion to sequential decision-making tasks. Additionally, we
integrated the ANN-SNN hybrid model architecture, which
comprises a spiking actor network (SAN [1]) and a deep
critic network. To ensure compatibility with offline rein-
forcement learning environments, we made necessary mod-
ifications to the official implementation. All the experimen-
tal results are shown in Table 9.

References
[1] Mahmoud Akl, Deniz Ergene, Florian Walter, and Alois

Knoll. Toward robust and scalable deep spiking reinforce-
ment learning. Frontiers in Neurorobotics, 16:1075647,
2023. 7

[2] Anirudhan Badrinath, Yannis Flet-Berliac, Allen Nie, and
Emma Brunskill. Waypoint transformer: Reinforcement
learning via supervised learning with intermediate targets.
Advances in Neural Information Processing Systems, 36:
78006–78027, 2023. 7

[3] David Brandfonbrener, William F Whitney, Rajesh Ran-
ganath, and Joan Bruna. Quantile filtered imitation learning.
arXiv preprint arXiv:2112.00950, 2021. 2

[4] David Brandfonbrener, Alberto Bietti, Jacob Buckman,
Romain Laroche, and Joan Bruna. When does return-
conditioned supervised learning work for offline reinforce-
ment learning? In Advances in Neural Information Process-
ing Systems 35: Annual Conference on Neural Information
Processing Systems 2022, NeurIPS 2022, New Orleans, LA,
USA, November 28 - December 9, 2022, 2022. 2

[5] Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee,
Aditya Grover, Michael Laskin, Pieter Abbeel, Aravind
Srinivas, and Igor Mordatch. Decision transformer: Rein-
forcement learning via sequence modeling. In Advances in
Neural Information Processing Systems 34: Annual Con-
ference on Neural Information Processing Systems 2021,
NeurIPS 2021, December 6-14, 2021, virtual, pages 15084–
15097, 2021. 2, 4

[6] Xinyue Chen, Zijian Zhou, Zheng Wang, Che Wang, Yanqiu
Wu, and Keith Ross. Bail: Best-action imitation learning
for batch deep reinforcement learning. Advances in Neural
Information Processing Systems, 33:18353–18363, 2020. 2

[7] Scott Emmons, Benjamin Eysenbach, Ilya Kostrikov, and
Sergey Levine. Rvs: What is essential for offline RL via su-
pervised learning? In The Tenth International Conference on
Learning Representations, ICLR 2022, Virtual Event, April
25-29, 2022. OpenReview.net, 2022. 2

[8] Charlotte Frenkel, David Bol, and Giacomo Indiveri.
Bottom-up and top-down approaches for the design of neu-
romorphic processing systems: tradeoffs and synergies be-
tween natural and artificial intelligence. Proceedings of the
IEEE, 111(6):623–652, 2023. 5

[9] Scott Fujimoto, David Meger, and Doina Precup. Off-policy
deep reinforcement learning without exploration. In Pro-
ceedings of the 36th International Conference on Machine
Learning, ICML 2019, 9-15 June 2019, Long Beach, Cali-
fornia, USA, pages 2052–2062. PMLR, 2019. 1

[10] Mark Horowitz. 1.1 computing’s energy problem (and what
we can do about it). In 2014 IEEE International Solid-State
Circuits Conference Digest of Technical Papers (ISSCC),
pages 10–14, 2014. 5

[11] Shengchao Hu, Li Shen, Ya Zhang, and Dacheng Tao.
Prompt-tuning decision transformer with preference ranking.
ArXiv preprint, abs/2305.09648, 2023. 2

[12] Shengchao Hu, Ziqing Fan, Chaoqin Huang, Li Shen, Ya
Zhang, Yanfeng Wang, and Dacheng Tao. Q-value regular-
ized transformer for offline reinforcement learning. ArXiv
preprint, abs/2405.17098, 2024. 2

[13] Ahmed Hussein, Mohamed Medhat Gaber, Eyad Elyan, and
Chrisina Jayne. Imitation learning: A survey of learning
methods. ACM Computing Surveys (CSUR), 50(2):1–35,
2017. 2



[14] Michael Janner, Qiyang Li, and Sergey Levine. Offline rein-
forcement learning as one big sequence modeling problem.
In Advances in Neural Information Processing Systems 34:
Annual Conference on Neural Information Processing Sys-
tems 2021, NeurIPS 2021, December 6-14, 2021, virtual,
pages 1273–1286, 2021. 2

[15] Jeonghye Kim, Suyoung Lee, Woojun Kim, and Youngchul
Sung. Decision convformer: Local filtering in metaformer is
sufficient for decision making. In International Conference
on Learning Representations, 2024. 7

[16] Ilya Kostrikov, Rob Fergus, Jonathan Tompson, and Ofir
Nachum. Offline reinforcement learning with fisher diver-
gence critic regularization. In Proceedings of the 38th In-
ternational Conference on Machine Learning, ICML 2021,
18-24 July 2021, Virtual Event, pages 5774–5783. PMLR,
2021. 1

[17] Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline re-
inforcement learning with implicit q-learning. arXiv preprint
arXiv:2110.06169, 2021. 1

[18] Aviral Kumar, Justin Fu, Matthew Soh, George Tucker, and
Sergey Levine. Stabilizing off-policy q-learning via boot-
strapping error reduction. In Advances in Neural Information
Processing Systems 32: Annual Conference on Neural Infor-
mation Processing Systems 2019, NeurIPS 2019, December
8-14, 2019, Vancouver, BC, Canada, pages 11761–11771,
2019. 1

[19] Aviral Kumar, Aurick Zhou, George Tucker, and Sergey
Levine. Conservative q-learning for offline reinforcement
learning. In Advances in Neural Information Processing Sys-
tems 33: Annual Conference on Neural Information Process-
ing Systems 2020, NeurIPS 2020, December 6-12, 2020, vir-
tual, 2020. 1

[20] Yang Li, Feifei Zhao, Dongcheng Zhao, and Yi Zeng. Di-
rectly training temporal spiking neural network with sparse
surrogate gradient. Neural Networks, 179:106499, 2024. 1

[21] Shuang Lian, Jiangrong Shen, Qianhui Liu, Ziming Wang,
Rui Yan, and Huajin Tang. Learnable surrogate gradient
for direct training spiking neural networks. In IJCAI, pages
3002–3010, 2023. 1

[22] Changze Lv, Tianlong Li, Jianhan Xu, Chenxi Gu, Zix-
uan Ling, Cenyuan Zhang, Xiaoqing Zheng, and Xuanjing
Huang. Spikebert: A language spikformer learned from bert
with knowledge distillation. 3

[23] Changze Lv, Jianhan Xu, and Xiaoqing Zheng. Spiking con-
volutional neural networks for text classification. In The
Eleventh International Conference on Learning Representa-
tions, ICLR 2023, Kigali, Rwanda, May 1-5, 2023. OpenRe-
view.net, 2023. 1

[24] Linghui Meng, Muning Wen, Chenyang Le, Xiyun Li, Deng-
peng Xing, Weinan Zhang, Ying Wen, Haifeng Zhang, Jun
Wang, Yaodong Yang, et al. Offline pre-trained multi-agent
decision transformer. Machine Intelligence Research, 20(2):
233–248, 2023. 2

[25] Xue Bin Peng, Aviral Kumar, Grace Zhang, and Sergey
Levine. Advantage-weighted regression: Simple and scal-
able off-policy reinforcement learning. arXiv preprint
arXiv:1910.00177, 2019. 1

[26] Xinyu Shi, Zecheng Hao, and Zhaofei Yu. Spikingres-
former: Bridging resnet and vision transformer in spiking
neural networks. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pages
5610–5619, 2024. 3

[27] Noah Y Siegel, Jost Tobias Springenberg, Felix
Berkenkamp, Abbas Abdolmaleki, Michael Neunert,
Thomas Lampe, Roland Hafner, Nicolas Heess, and Martin
Riedmiller. Keep doing what worked: Behavioral modelling
priors for offline reinforcement learning. arXiv preprint
arXiv:2002.08396, 2020. 2

[28] Qiaoyi Su, Shijie Mei, Xingrun Xing, Man Yao, Jiajun
Zhang, Bo Xu, and Guoqi Li. Snn-bert: Training-efficient
spiking neural networks for energy-efficient bert. Neural
Networks, 180:106630, 2024. 3

[29] Hengkai Tan, Songming Liu, Kai Ma, Chengyang Ying,
Xingxing Zhang, Hang Su, and Jun Zhu. Fourier controller
networks for real-time decision-making in embodied learn-
ing. In Forty-first International Conference on Machine
Learning, 2024. 4, 5

[30] Faraz Torabi, Garrett Warnell, and Peter Stone. Behavioral
cloning from observation. In Proceedings of the Twenty-
Seventh International Joint Conference on Artificial Intelli-
gence, IJCAI 2018, July 13-19, 2018, Stockholm, Sweden,
pages 4950–4957. ijcai.org, 2018. 1

[31] Qing Wang, Jiechao Xiong, Lei Han, Han Liu, Tong Zhang,
et al. Exponentially weighted imitation learning for batched
historical data. Advances in Neural Information Processing
Systems, 31, 2018. 2

[32] Yuanfu Wang, Chao Yang, Ying Wen, Yu Liu, and Yu Qiao.
Critic-guided decision transformer for offline reinforcement
learning. In Thirty-Eighth AAAI Conference on Artificial In-
telligence, AAAI 2024, Thirty-Sixth Conference on Innova-
tive Applications of Artificial Intelligence, IAAI 2024, Four-
teenth Symposium on Educational Advances in Artificial In-
telligence, EAAI 2014, February 20-27, 2024, Vancouver,
Canada, pages 15706–15714. AAAI Press, 2024. 2

[33] Yujie Wu, Lei Deng, Guoqi Li, Jun Zhu, and Luping
Shi. Spatio-temporal backpropagation for training high-
performance spiking neural networks. Frontiers in neuro-
science, 12:331, 2018. 1

[34] Yifan Wu, George Tucker, and Ofir Nachum. Behavior
regularized offline reinforcement learning. arXiv preprint
arXiv:1911.11361, 2019. 1

[35] Yueh-Hua Wu, Xiaolong Wang, and Masashi Hamaya. Elas-
tic decision transformer. Advances in neural information
processing systems, 36:18532–18550, 2023. 7

[36] Xingrun Xing, Zheng Zhang, Ziyi Ni, Shitao Xiao, Yim-
ing Ju, Siqi Fan, Yequan Wang, Jiajun Zhang, and Guoqi
Li. Spikelm: towards general spike-driven language model-
ing via elastic bi-spiking mechanisms. In Proceedings of the
41st International Conference on Machine Learning, pages
54698–54714, 2024. 7

[37] Man Yao, Jiakui Hu, Zhaokun Zhou, Li Yuan, Yonghong
Tian, Bo Xu, and Guoqi Li. Spike-driven transformer. In
Advances in Neural Information Processing Systems 36: An-
nual Conference on Neural Information Processing Systems



2023, NeurIPS 2023, New Orleans, LA, USA, December 10
- 16, 2023, 2023. 3, 7

[38] Man Yao, JiaKui Hu, Tianxiang Hu, Yifan Xu, Zhaokun
Zhou, Yonghong Tian, Bo XU, and Guoqi Li. Spike-driven
transformer v2: Meta spiking neural network architecture in-
spiring the design of next-generation neuromorphic chips. In
The Twelfth International Conference on Learning Represen-
tations, 2024. 3, 5, 7

[39] Hanle Zheng, Yujie Wu, Lei Deng, Yifan Hu, and Guoqi
Li. Going deeper with directly-trained larger spiking neu-
ral networks. In Thirty-Fifth AAAI Conference on Artificial
Intelligence, AAAI 2021, Thirty-Third Conference on Inno-
vative Applications of Artificial Intelligence, IAAI 2021, The
Eleventh Symposium on Educational Advances in Artificial
Intelligence, EAAI 2021, Virtual Event, February 2-9, 2021,
pages 11062–11070. AAAI Press, 2021. 4

[40] Chenlin Zhou, Liutao Yu, Zhaokun Zhou, Zhengyu Ma, Han
Zhang, Huihui Zhou, and Yonghong Tian. Spikingformer:
Spike-driven residual learning for transformer-based spiking
neural network. ArXiv preprint, abs/2304.11954, 2023. 3

[41] Chenlin Zhou, Han Zhang, Zhaokun Zhou, Liutao Yu,
Zhengyu Ma, Huihui Zhou, Xiaopeng Fan, and Yonghong
Tian. Enhancing the performance of transformer-based
spiking neural networks by snn-optimized downsampling
with precise gradient backpropagation. arXiv preprint
arXiv:2305.05954, 2023. 3

[42] Chenlin Zhou, Han Zhang, Zhaokun Zhou, Liutao Yu, Liwei
Huang, Xiaopeng Fan, Li Yuan, Zhengyu Ma, Huihui Zhou,
and Yonghong Tian. Qkformer: Hierarchical spiking trans-
former using qk attention. ArXiv preprint, abs/2403.16552,
2024. 3

[43] Zhaokun Zhou, Yuesheng Zhu, Chao He, Yaowei Wang,
Shuicheng Yan, Yonghong Tian, and Li Yuan. Spikformer:
When spiking neural network meets transformer. In The
Eleventh International Conference on Learning Representa-
tions, ICLR 2023, Kigali, Rwanda, May 1-5, 2023. OpenRe-
view.net, 2023. 3

[44] Rui-Jie Zhu, Qihang Zhao, Guoqi Li, and Jason Eshraghian.
SpikeGPT: Generative pre-trained language model with
spiking neural networks. Transactions on Machine Learn-
ing Research, 2024. 3


	Notation and Definitions
	Spiking Neuron Network
	Surrogate Gradient and Loss Backpropagation
	Related Work

	Computational Complexity Analysis
	Step-by-step Spiking Self-Attention
	Temporal Spiking Self-Attention
	Positional Spiking Self-Attention

	Implementation Details of PTBN
	Representations of PTBN
	PTBN Fusion in Inference

	Experimental Setup
	Decision Transformer Setup
	Hyperparameters
	Parameters

	Theoretical Energy Evaluation
	Ablations
	Visualization
	More Results

