
Deformable Radial Kernel Splatting

Supplementary Material

Outline

In this supplementary file, we provide additional appli-
cations and potential usages of DRK, an introduction to the
DiverseScenes dataset, implementation details, and further
results that could not be included in the main paper due to
space constraints. The content is organized as follows:
• Sec. S1: More results of seamless conversion from mesh

models to DRK representations, bridging millions of 3D
assets with high-fidelity reconstructed scenes.

• Sec. S2: Introduction to the DiverseScenes dataset.
• Sec. S3: Additional experimental results on public

datasets and an analysis of limitations.
• Sec. S4: Detailed implementation of the DRK framework.

S1. Converting Mesh to DRK
We present more examples of converting 3D mesh assets
to DRK within seconds, without the need for training data
preparation or optimization, in Fig. S1. Rendered depth and
normal images are also provided. In these examples, the
DRK is kernel-wise colored and shaded over the base color
using the normal and predefined illumination. In the fu-
ture, by assigning UV attributes to DRK and rendering them
into images, material properties such as albedo, roughness,
and metallicity can be retrieved from the material maps, en-
abling deferred rendering using the rendered normals. This
capability allows DRK to handle traditional assets and com-
pose scenes reconstructed from real-world multi-views and
man-made artistic 3D assets.

It is worth noting that cache-sorting has minimal impact
on reconstruction quality but plays a crucial role in the con-
version from mesh to DRK. This is because Mesh2DRK
produces a compact geometric representation, where each
DRK kernel represents a relatively larger unit of a mesh face
compared to those learned from multi-view images, which
use smaller units to capture high-frequency appearance de-
tails. Cache-sorting ensures that the sorting order is nearly
correct, resulting in satisfactory conversion outcomes.

S2. DiverseScenes Dataset
We collected 10 scenes from Sketchfab1, encompassing a
variety of 3D scene types. As illustrated in Fig. S2, the
dataset includes scenes with simple geometry and textures
(e.g., McCree, House), detailed textures (e.g., Newspaper,
Book), fine geometry (e.g., PalmTree, Dress), and large
scales (e.g., Minecraft, Street). The training set consists

1https://sketchfab.com/

Mesh DRK

Color Depth Normal

Figure S1. Examples of converting various 3D assets. The normal
of DRK can be used for shading under illumination. UV texture
mapping is applicable for DRK in future implementations.

of 200 views, and the test set includes 30 views, sampled
from the unit sphere. For Minecraft and Street, there are
230 training views, with the train and test views simulating
a walking camera along specified paths.

McCree House Armor DiscoBall

Newspaper Book PalmTree Dress

MineCraft Street

Figure S2. Overview of DiverseScenes. The dataset is composed
of five categories: simple, specular, detailed geometry, fine tex-
ture, and large scale.



Methods McCree House

PSNR(↑) LPIPS(↓) SSIM(↑) PSNR(↑) LPIPS(↓) SSIM(↑)

2D-GS 40.95 .0067 .9985 43.25 .0351 .9953
3D-GS 39.15 .0115 .9975 39.87 .0507 .9907
3D-HGS 40.64 .0062 .9965 42.17 .0335 .9897
GES 40.48 .0086 .9982 41.42 .0446 .9927

Ours (S2) 39.76 .0104 .9977 40.92 .0462 .9914
Ours (S1) 40.90 .0067 .9985 43.57 .0269 .9963
Ours 41.70 .0047 .9989 45.22 .0163 .9980

Methods Book Newspaper

PSNR(↑) LPIPS(↓) SSIM(↑) PSNR(↑) LPIPS(↓) SSIM(↑)

2D-GS 38.20 .1199 .9673 46.97 .0048 .9995
3D-GS 42.25 .1211 .9944 46.89 .0045 .9991
3D-HGS 43.48 .0775 .9842 48.89 .0019 .9981
GES 43.49 .1122 .9960 46.97 .0036 .9993

Ours (S2) 43.28 .1042 .9961 47.75 .0032 .9991
Ours (S1) 45.57 .0904 .9976 49.76 .0023 .9992
Ours 47.28 .0801 .9983 50.88 .0019 .9993

Methods Dress PalmTree

PSNR(↑) LPIPS(↓) SSIM(↑) PSNR(↑) LPIPS(↓) SSIM(↑)

2D-GS 26.04 .0367 .9807 33.76 .0659 .9593
3D-GS 25.45 .0378 .9782 32.82 .0725 .9533
3D-HGS 27.30 .0217 .9773 33.54 .0595 .9423
GES 27.31 .0254 .9859 33.41 .0682 .9549

Ours (S2) 27.56 .0362 .9770 33.80 .0592 .9648
Ours (S1) 29.19 .0225 .9899 34.14 .0562 .9677
Ours 29.61 .0196 .9917 34.25 .0536 .9688

Methods Armor Discoball

PSNR(↑) LPIPS(↓) SSIM(↑) PSNR(↑) LPIPS(↓) SSIM(↑)

2D-GS 32.65 .0500 .9742 21.70 .0639 .9357
3D-GS 31.51 .0687 .9684 22.81 .0828 .9361
3D-HGS 32.26 .0518 .9512 22.28 .0505 .9381
GES 31.98 .0603 .9713 22.09 .0661 .9386

Ours (S2) 32.01 .0592 .9736 22.13 .0816 .9404
Ours (S1) 33.27 .0430 .9791 22.26 .0832 .9414
Ours 34.07 .0346 .9814 22.31 .0838 .9415

Methods Minecraft Street

PSNR(↑) LPIPS(↓) SSIM(↑) PSNR(↑) LPIPS(↓) SSIM(↑)

2D-GS 23.15 .4119 .7262 32.45 .0881 .9514
3D-GS 25.81 .3516 .8116 38.56 .0591 .9917
3D-HGS 26.10 .3070 .7568 40.23 .0274 .9873
GES 25.83 .3554 .8072 37.51 .0594 .9902

Ours (S2) 25.01 .3584 .8019 38.12 .0596 .9950
Ours (S1) 25.98 .3057 .8410 41.58 .0312 .9981
Ours 26.84 .2512 .8755 43.72 .0183 .9989

Methods Average

PSNR(↑) LPIPS(↓) SSIM(↑) Num(↓) Size(↓) FPS(↑)

2D-GS 33.92 .0881 .9514 359K 83.6M 251.3
3D-GS 34.41 .0861 .9621 346K 82.0M 247.1
3D-HGS 35.68 .0637 .9521 373K 89.6M 154.5
GES 35.05 .0804 .9634 330K 78.1M 227.4

Ours (S2) 35.03 .0823 .9637 42K 12.3M 234.9
Ours (S1) 36.62 .0668 .9701 109K 32.1M 119.2
Ours 37.58 .0564 .9752 260K 76.6M 77.5

Table S1. We show the PSNR, LPIPS, and SSIM metrics for novel
view synthesis on DiverseScenes.

To offer a more comprehensive overview of the Divers-
eScenes Dataset, we manually annotated the attributes of
each scene, as summarized in Table S2. Note that some at-
tributes overlap; for instance, both Armor and Street include
fine textures. To clarify the performance of methods on Di-
verseScenes, we present the per-scene results in Table S1.
These results are also summarized by scene categories in
the main paper.

Scene Geometry Texture Scale Material
Coarse Fine Coarse Fine Small Large Diffuse Specular

McCree ✓ × ✓ × ✓ × ✓ ×
House ✓ × ✓ × ✓ × ✓ ×
Book ✓ × × ✓ ✓ × ✓ ×
Newspaper ✓ × × ✓ ✓ × ✓ ×
Dress × ✓ ✓ × ✓ × ✓ ×
PalmTree × ✓ ✓ × ✓ × ✓ ×
Armor ✓ × × ✓ ✓ × × ✓
DiscoBall ✓ × ✓ × ✓ × × ✓

Street ✓ × × ✓ × ✓ ✓ ×
MineCraft ✓ × ✓ × × ✓ ✓ ✓

Table S2. Summary of scene attribute annotations.

Scene 2D-GS 3D-GS 3D-HGS GES DRK (S2) DRK (S1) DRK

Chair 34.88 35.83 34.29 34.05 34.38 35.28 35.61
Drums 25.67 26.15 26.29 26.05 25.90 26.12 26.13
Ficus 35.80 34.87 35.45 35.27 35.56 36.27 36.50
Hotdog 36.89 37.72 37.54 37.13 37.19 37.84 38.17
Lego 34.82 35.78 33.92 33.73 33.90 35.38 36.25
Materials 30.14 30.00 29.88 29.74 29.38 30.14 30.48
Mic 34.38 35.36 36.58 35.73 35.17 35.70 36.00
Ship 31.09 30.80 31.10 30.94 30.84 31.28 31.42

Avg PSNR 32.96 33.32 33.13 32.83 32.79 33.50 33.82

Num 107K 131K 83K 73K 32K 75K 158K
Size 25.0M 31.1M 20.0M 17.4M 9.6M 22.0M 46.6M

Table S3. PSNR scores, primitive numbers, and model sizes on
NeRF-Synthetic [? ] scenes (transposed).

S3. More Experiments & Limitation Analysis
Evaluation on NeRF-Synthetic Scenes. We conducted a
quantitative evaluation on NeRF-Synthetic [? ] scenes, re-
porting PSNR scores, primitive numbers, and model sizes
in Table S3. Unlike DiverseScenes, the training cameras
for NeRF-Synthetic scenes (except Ficus) are sampled from
the upper hemisphere, and some test views fall outside the
range covered by the training views. This setup partially
assesses performance on view extrapolation. Our DRK
method demonstrates superior performance. While the ker-
nel number for DRK is slightly larger than for 3D-GS [?
], DRK (S1) maintains a compact number and outperforms
other methods in PSNR scores. DRK (S3) has a very small
kernel number and model size, with an average PSNR still
comparable to others.

Ablation Study To gain a comprehensive understanding
of DRK, we perform ablation studies on its attributes to as-
sess their impact. We remove the effects of sharpening and
curvature learning by setting τ = 0 and η = 0, respec-
tively. We also examine the impact of the hyper-parameter
K. Ablation results on DiverseScenes are shown in Tab. S4.
We found that K significantly influences performance, with
K = 3 causing the greatest drop. Additionally, η is more
vital than τ , though both enhance representation capability.

Evaluation on Tank&Temple Scenes. To assess our
method’s performance on more challenging scenes with
imperfect camera conditions due to dynamic objects and
changing exposures, we evaluated the Tank&Temple [? ]



Methods τ = 0 η = 0 K = 3 K = 5 K = 8

DRK (S2) 34.97 34.82 33.93 34.47 35.03
DRK (S1) 36.22 36.04 35.50 35.88 36.62
DRK 37.46 37.27 36.60 36.85 37.58

Table S4. Ablation study on the impact of τ , η, and K.

datasets. We used 9 scenes in total, including 8 intermedi-
ate scenes and the Truck scene. We report the PSNR scores,
foreground-only PSNR scores (M-PSNR), primitive num-
bers, and model sizes in Table S5. The results indicate that
DRK faces significant challenges with this dataset, likely
due to higher camera error estimated by COLMAP [? ].
The Tank&Temple datasets are captured in dynamic envi-
ronments with moving pedestrians and changing exposure,
making camera estimation more difficult than in MipNeRF-
360 [? ], where objects are primarily diffuse and free from
view-dependent effects, transients, or significant sunlight
exposure changes. To further investigate the robustness of
DRK, we conducted evaluations with noisy camera data.

Methods 2D-GS 3D-GS 3D-HGS GES Ours (S2) Ours (S1) Ours

PSNR 20.65 21.09 21.59 20.58 20.20 20.31 20.41
M-PSNR 26.50 26.92 27.58 26.56 26.36 26.41 26.37
Num 1168K 275K 267K 259K 173K 212K 383K
Size 271.9M 65.4M 64.2M 61.7M 50.9M 62.4M 112.6M

Table S5. Quantitative evaluation on Tank&Temple scenes.

Robustness against Camera Noise To evaluate the per-
formance of DRK under varying levels of camera noise, we
simulated camera noise with different standard deviations
(Std). The PSNR scores on DiverseScenes with noisy cam-
eras are reported in Table S6. We observed that the PSNR
scores of DRK drop significantly as the camera noise in-
creases, whereas the performance of 3D-GS degrades more
smoothly and slightly.

Noise Std 3D-GS DRK DRK (S1) DRK (S2)

0 34.41 37.58 36.62 35.03
1e− 3 33.44 31.59 31.19 30.88
2.5e− 3 31.32 29.27 28.89 28.60
5e− 3 29.37 27.85 27.44 27.14

Table S6. Average PSNR scores on DiverseScenes of 3D-GS and
DRK under different levels of camera noise.

Fig. S3 shows the rendering results of 3D-GS and DRK
trained with both accurate and noisy cameras. When trained
with accurate cameras, DRK achieves higher-quality ren-
dering with sharper and clearer appearances. However, even
with very small camera noise, the performance of DRK de-
teriorates significantly, producing blurrier and more chaotic
results compared to 3D-GS. In contrast, 3D-GS maintains
the ability to model the coarse appearance of the scene un-
der noisy conditions. These results demonstrate that DRK

is less robust to camera noise, which may explain its perfor-
mance drop on the Tank&Temple dataset.

GT 3D-GS DRK 3D-GS DRK

Noise Std = 0 Noise Std = 1e-3

PSNR 48.87 PSNR 54.11 PSNR 24.78 PSNR 19.15

PSNR 39.02 PSNR 42.53 PSNR 30.04 PSNR 27.20

Figure S3. Rendering results of 3D-GS and DRK trained on cam-
eras with and without noise.

S4. Method Details
Parametrization. DRK attributes are modeled using un-
constrained learnable parameters in (−∞,∞), with appro-
priate activation functions to ensure valid ranges. We apply
a sigmoid function to constrain opacity o to (0, 1), an ex-
ponential function for scale activation sk, and a normaliza-
tion function for rotation quaternion q. The sharpness τ is
bounded within (−0.1, 0.99) through a composite function
combining sigmoid and linear remapping, while the L1&L2
blending weight η is activated using a sigmoid function.
For the basis angle θk, we employ a three-step activation
process: first applying a sigmoid function, then adding a
residual term 1

K−2 to maintain minimum angular separa-
tion, applying cumulative summation to enforce monotonic
increase, and finally normalizing to make sK = 2π. The
residual term prevents basis polar angles from exceeding π,
thereby avoiding degradation in the representation. We set
K = 8 to balance flexibility and memory efficiency.

Model Training. Following 3D-GS, we optimize model
parameters and dynamically adjust kernel density through
an adaptive training process. For DRK-specific parame-
ters - sharpness τ , blending weight η, basis angles θk, and
scales sk - we set a uniform learning rate of 5e−3 and de-
cay them gradually to the rate 1e−2× at the end of training
(35K steps). We implement three density control configura-
tions through the 2D screen gradient densification threshold
and opacity pruning threshold pairs: (5e−4, 5e−2) for den-
sity comparable to 3D-GS, (1e−3, 5e−2) for Sparse Level 1
(S1), and (2e−3, 1e−1) for Sparse Level 2 (S2).



Figure S4. Sorting accuracy comparisons: We found that pre-sorting tile-kernel pairs based on the nearest distance, combined with cache-
sorting, achieves the highest accuracy. Cache-sorting is sufficiently effective in correcting most sorting disorders.

𝜇

𝑢𝑣

𝑞

𝜃

{𝜃𝑘} {𝑠𝑘}

Δ𝜃𝑘

𝑟2 ҧ𝑠𝑟1

𝜏

𝜂 𝑔

𝑜

Ψ(𝑔)

𝛼

Figure S5. The ”Tensor Graph” of DRK, showing the dependence
between parameters to optimize, intermediate variables, and the
final output (α).

Tensor Graph of DRK To provide a detailed overview of
DRK, we present its ”Tensor Graph,” which illustrates the
flow from the learnable leaf parameters through the inter-
mediate variables, ultimately leading to the outputs. The
graph is shown in Fig. S5. Blue arrows represent data de-
pendencies, along which gradients are back-propagated in
reverse during optimization.

Cache-Sorting To clarify the cache-sorting algorithm, we
briefly summarize the process in Algorithm 1. As discussed

in StopThePop [? ], the backward processing must also be
adjusted to proceed from front to back to maintain consis-
tency with forward rendering.

Algorithm 1: Cache-Sorting
Input: A cache chain with limited size, a new DRK

(with an index and depth)
Output: The index of textitDRK or a status code

1 if the cache is empty then
2 if the new DRK is invalid then
3 return a finish code;

4 Initialize the cache with the new DRK;
5 return success;

6 if the new DRK is invalid then
7 Pop the DRK from the head;
8 return the index of the popped DRK;

9 if the cache is full then
10 Mark the head DRK to be popped;

11 Determine where to insert the new DRK by
scanning the cache, guided by the DRK’s depth;

12 Adjust the pointers in the cache to insert the new
DRK at the correct position;

13 if the cache was full then
14 Pop the oldest DRK;

15 return the index of the popped DRK (or success if
none was popped);

We evaluate the effectiveness of cache-sorting using a
cache length of 8. DRK kernels are randomly sampled from
the space, and the depths of DRK intersections processed
in a front-to-back order are visualized in Fig. S4. Addi-
tionally, we assess the performance using metrics such as
accuracy, Kendall’s Tau, and MAE. Our results show that in
the pre-sorting stage (kernel-tile sorting), sorting based on



the nearest distance between the DRK and the tile achieves
the highest sorting accuracy. Sorting based on the most cen-
tric approach closely follows in performance. Both methods
provide notable improvements compared to cache-sorting
alone. Presorting with the nearest distance is also better
than the vanilla presorting strategy on DRK. For further de-
tails and a more in-depth discussion, we refer readers to the
StopThePop [? ] paper, a pioneering work in this field.


	. Converting Mesh to DRK
	. DiverseScenes Dataset
	. More Experiments & Limitation Analysis
	. Method Details

