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In this supplementary, we first provide additional details
on the datasets and data preprocessing (Sec. 1). We then
describe the implementation details of the network (Sec. 2).
Next, we present further ablation experiments (Sec. 3). Fi-
nally, we provide additional visualizations of the KITTI
odometry datasets (Sec. 4).

1. Datasets and Data Pre-processing
1.1. Dataset

The KITTI odometry dataset[1] consists of 22 independent
sequences, specifically designed for evaluating visual and
LiDAR-based odometry and SLAM methods. In our ap-
proach, we focus exclusively on the Velodyne LiDAR point
cloud data, utilizing the XY Z coordinates provided in the
scans. Sequences 00-10, comprising 23,201 scans, are ac-
companied by ground truth poses (trajectories), enabling
training and quantitative evaluation. However, ground truth
data is not publicly available for sequences 11-21, which
include an additional 20,351 scans. The dataset captures di-
verse driving environments, such as highways, residential
areas, and campus roads, providing a rich and varied set of
point cloud data for benchmarking LiDAR odometry tasks.

1.2. Data Preprocessing

We adopted a data preprocessing approach similar to that
described in [4]. Specifically, we only use the coordinate
information of LiDAR points. Since the ground truth poses
are provided in the left camera coordinate system, both the
training and evaluation processes are conducted within this
coordinate system. To achieve this, the point clouds cap-
tured by the Velodyne LiDAR are transformed into the left
camera coordinate system using the following equation:

Pcam = TrPvel, (1)

where Pcam and Pvel represent the coordinates of the point
cloud in the left camera coordinate system and the LiDAR
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coordinate system, respectively, and Tr is the calibration
matrix of each sequence. In addition, to handle potential
outliers in the point cloud, often appearing at the edges due
to objects being far from the LiDAR sensor, we exclude Li-
DAR points located beyond a 30-meter by 30-meter bound-
ing box surrounding the vehicle. Given that ground reflec-
tions in point cloud data often appear below 0.55 meters,
these low-elevation artifacts are systematically eliminated.
This preprocessing effectively improves the quality of the
point cloud data while accelerating data loading and train-
ing.

1.3. Data Augmentation Parameters

We adopted a data augmentation approach similar to that
described in [4]. Specifically, we augment the training data
by applying an augmentation matrix Taug , which is com-
posed of a rotation matrix Raug and a translation vector
taug .The yaw, pitch, and roll Euler angles for Raug are
sampled from Gaussian distributions centered at 0◦, with
standard deviations of 0.01◦, 0.05◦ and 0.01◦, respectively.
Similarly, the translation components X,Y , and Z of taug
follow Gaussian distributions with standard deviations of
0.1m, 0.1m, and 0.5m, respectively. To ensure consistency
and avoid extreme perturbations, only values within twice
the standard deviation of the mean are selected for augmen-
tation. The generated transformation Taug is then applied to
the point cloud PC1, resulting in the augmented point cloud
PC1,aug . This augmentation strategy effectively enhances
the diversity of the training dataset while maintaining real-
istic variations.

2. Implementation Details
2.1. Training and Inference Process

Training. Our diffusion model adopts the same sampling
and training strategy as described in DDIM [2]. Specifi-
cally, the training process is outlined in Algorithm 1. To be-
gin, the intermediate pose residual Tt is sampled from the
forward diffusion process by applying a predefined noise
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Figure 1. 3D and 2D trajectory results of our network on KITTI sequences 00-10, compared with ground truth.



Method 07† 08† 09† 10† Mean on 07-10 Runtime(ms)
trel rrel trel rrel trel rrel trel rrel trel rrel

w/o diffusion-based refinement layer 4.83 3.82 6.77 3.05 5.29 2.22 7.09 3.97 5.995 3.265 7.4
Predicted pose with one refinement layer 1.02 0.91 1.58 0.73 1.21 0.62 2.18 1.29 1.498 0.888 25.7
Predicted pose with two refinement layers 0.56 0.47 1.32 0.55 0.58 0.35 1.25 0.80 0.928 0.543 32.9
Ours (Predicted pose with three refinement layers) 0.37 0.27 1.12 0.44 0.68 0.28 0.66 0.32 0.708 0.328 76.9

Table 1. Ablation studies about the layer number of diffusion-based refinement on the KITTI odometry [1] dataset.

Method 07† 08† 09† 10† Mean on 07-10
trel rrel trel rrel trel rrel trel rrel trel rrel

Layer-0 Semantic Supervision 0.42 0.30 1.12 0.44 0.71 0.28 0.81 0.53 0.765 0.388
Ours (Layer-3 Semantic Supervision) 0.37 0.27 1.12 0.44 0.68 0.28 0.66 0.32 0.708 0.328

Table 2. Ablation Studies on Semantic Feature Supervision at Different Levels on the KITTI Odometry [1] Dataset

Algorithm 1 Training Process

Input: timestamp t, ground truth pose residual T0, condi-
tion information C.

1: repeat
2: T0 ∼ q(T0)
3: t ∼Uniform({1, . . . ,K})
4: Tt =

√
αtT0 +

√
1− αtϵ, ϵ ∼ N (0, I)

5: optimize loss: L = loss(T0,Mθ(Tt, C, t))
6: until converged

Algorithm 2 Sampling Process

Input: timestamp t, Gaussian noise Tt, condition informa-
tion C.

Output: refined pose resiudal T0

1: Tk ∼ N (0, I)
2: for t = k, . . . , 1 do
3: if t > 1: z ∼ N (0, I)
4: else: z = 0
5: Tt−1 = 1√

αt
(Tt − 1−αt√

1−αt
Mθ(Tt, C, t)) + σtz

6: end for
7: return T0

schedule to the ground truth residual pose T0. During train-
ing, the condition information C, the intermediate pose
residual Tt, and the time embedding t serve as inputs to
the denoising network Mθ. The objective of the opti-
mization process is to minimize the divergence between
the ground truth pose residual T0 and the predicted pose
residual Mθ(Tt, C, t), effectively narrowing the distribu-
tion gap. Our network employs a multi-scale supervision
mechanism that integrates supervision from the pose, pose
residual, and semantic features. Furthermore, to emphasize
different refinement layers in the training process, we as-
sign loss weights of 0.2, 0.4, 0.8, and 1.6 across successive

layers. All variables and notations are defined in detail in
the main manuscript.

Sampling. We iteratively generate pose residuals start-
ing from an initial Gaussian noise Tt, as described in Algo-
rithm 2. Our proposed diffusion-based refinement module
progressively refines the pose residuals in a coarse-to-fine
manner. Each refinement layer follows the same sampling
process outlined in Algorithm 2.

3. Additional Experiments

Refinement layer number. We first evaluate the impact
of the number of diffusion-based refinement layers in our
model. As shown in Tab. 1, increasing the number of
coarse-to-fine refinement layers initially improves the ac-
curacy of the predicted pose. However, as the number of
layers continues to increase, the computational cost rises
significantly. This observation suggests that there exists an
optimal balance between refinement depth and efficiency.

Layer-3 Semantic Supervision vs Layer-0 Semantic
Supervision We explored the impact of supervising seman-
tic features at different levels. As shown in Tab. 2, the exper-
imental results demonstrate that supervising semantic fea-
tures at Layer 3 achieves better performance compared to
lower-level feature supervision. This highlights the effec-
tiveness of leveraging higher-level semantic representations
for improved results.

The Semantic Module network We evaluated the
performance of different semantic regression subnetwork
within the semantic module, including a transformer-based
network [3] (referred to as ”trans-based”). As shown in
Tab. 3. The results highlight the superiority of our semantic
regression subnetwork compared to alternative designs.



Method 07† 08† 09† 10† Mean on 07-10
trel rrel trel rrel trel rrel trel rrel trel rrel

trans-based Semantic Module 0.52 0.40 1.22 0.49 0.59 0.29 0.93 0.35 0.815 0.383
Ours 0.37 0.27 1.12 0.44 0.68 0.28 0.66 0.32 0.708 0.328

Table 3. Ablation Studies on Variants of the Semantic Regression Subnetwork in the Semantic Module on the KITTI Odometry [1] Dataset

4. More Trajectory Results
We list all visualized trajectory results on sequences 00-
10 of KITTI odometry dataset [1] with the ground truth in
Fig. 1. The figure shows our odometry can track the trajec-
tory of the ground truth fairly well.
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