Few-shot Implicit Function Generation via Equivariance

Supplementary Material

1. Detailed Problem Formalization

Following the definition we gave in the Preliminary, we
now formulate a more theoretical and official definition.

We aim to generate diverse neural network weights that
encode different instances within the same signal class (e.g.,
different styles of digit 7", different shapes of planes) as
implicit neural representations, given only a few example
weights as reference.

Let W C R? denote the weight space of MLPs with
a fixed architecture, where d is the total number of parame-
ters when all weights are flattened into a single vector. Con-
sider a class space F where each f € F represents a class
of signals (e.g., a specific digit, a category of shapes). Let
®: W — (X = Y) map weights to their corresponding
implicit functions, where X is the coordinate space (e.g.,
2D/3D coordinates) and ) is the target space (e.g., RGB
values, occupancy).

Definition 1 (Class-Induced Weight Distribution). For any
class f € F with corresponding coordinate space X, we
define its corresponding weight distribution as:

pi(w) := P(w|d(®(w), ) <€) (1)

where validity is measured by a distance metric:

d(®(w), ) = By [|®(w)(2) —ys (@)3]*, @

where yr(x) represents the target values for class f at co-
ordinate x, and € > 0 is a tolerance parameter that deter-
mines the acceptable variation within the class.

Definition 2 (Few-shot Weight Generation). Given:

* A set of training classes {f1,..., fn} C F (e.g., different
digits, different shape categories) with their correspond-
ing weight distributions {ps, (w), ..., psy (W)}

* Foreach class fi, a support set Sy, = {w?}, ..., w}.} where
w; g py, (w) represents different MLP weights that en-
code valid instances of that class

The Few-shot Class-based INR Weight Generation prob-
lem is to learn a generator G that can estimate the weight
distribution of any class f € F given only its k-shot support
set:

GZSf »—>]5f(w), 3)

such that the generated distribution py(w) ~ ps(w) when
Sy = {wr, ..., wx} ik ps(w). The final objective is to
minimize the expected distribution distance over the space
of possible test classes:

min B #[D(G(Sy), pr(w))| Sy =" prw)]. @)

2. Additional Related Work
2.1. Implicit Neural Representation

Implicit Neural Representations (INRs) have demonstrated
remarkable efficacy in representing diverse forms of com-
plex signals, including spatial occupancy [25, 35, 37], 3D
geometric morphology [2, 4, 10], signed distance func-
tions [17, 30], 3D scene appearence [5, 16, 21, 26, 42] and
some other complex signals [3, 22, 23, 43] with the help of
a small neural network, usually a MLP with few layers.

Within this domain, several methodological innovations
have emerged as particularly noteworthy. The SIREN ar-
chitecture employs sinusoidal activation functions to cap-
ture high-frequency spatial details with unprecedented fi-
delity [37]. Subsequent research has introduced Gaussian
activation functions, offering enhanced initialization stabil-
ity and parameter efficiency compared to their predeces-
sors [32]. The WIRE framework represents a significant ad-
vancement through its implementation of continuous com-
plex Gabor wavelets, enabling robust and high-precision
representation of natural images [35]. Furthermore, LIIF
has introduced novel approaches to continuous representa-
tion, specifically addressing the challenge of arbitrary reso-
lution representation [3].

2.2. Generative Models

For image generation task, diffusion probabilistic models
have revolutionized generative modeling [6, 14, 39], emerg-
ing as a powerful alternative to traditional approaches like
GANs [11] and energy-based models (EBMs) [7]. Their
success in image synthesis stems from their ability to pro-
duce higher quality outputs with improved fidelity [33, 39],
while also enabling effective text conditioning [28, 34]. A
notable advancement came with Latent Diffusion, which
achieved efficient high-resolution image synthesis by ap-
plying the diffusion process in the latent space of pretrained
autoencoders [1, 33].

The extension of diffusion models to 3D domains has
followed several paths. Early attempts to directly apply 2D
generation techniques to 3D voxel grids encountered com-
putational limitations at higher resolutions due to the inher-
ent complexity of 3D convolution networks [20, 38, 41].
This led researchers to explore alternative 3D representa-
tions, including point clouds [44, 47] and implicit fields [4,
24]. A significant breakthrough came with MeshDiffu-
sion [18], which pioneered the unconditional generation of
3D shapes using diffusion models with direct 3D shape su-
pervision.

Recent work has expanded diffusion models beyond tra-
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Figure 1. Visualization of the proposed INR-based data augmen-
tation including color jitter (middle) and bias disturbance (right).

ditional data types to address the challenge of generating
neural network parameters. HyperNetworks[ 12] introduced
the concept of using one network to learn the parameters
of another. Model-Agnostic Meta-Learning (MAML) de-
veloped methods for learning parameter initializations that
enable efficient fine-tuning [9]. The G.pt model proposed
predicting parameter update distributions based on initial
parameters and prompted losses [31]. Other approaches
have included using autoencoders trained on model zoos
to learn hyper-representations for parameter generation [36,
40], GNN-based parameter sampling [15], and direct MLP
weight generation for neural implicit fields [8].

Most recently, diffusion models have been successfully
applied to generate high-performing neural network param-
eters across various architectures and datasets, demonstrat-
ing their potential for weight generation tasks.

3. INR-based Data Augmentation

For the INR-based data augmentation part. In our frame-
work, we incorporate several established augmentation
methods for INRs. Consider an INR that maps an image,
defined as f : R?2 — R3, where z represents a normalized
coordinate grid in [0, 1] serving as the input to the INR.
Through manipulating the weight vector, we can simulate
various image augmentations on the INR’s representation.
For instance, given a rotation matrix R € R?*2, multipli-
cation of the first layer weights W with R effectively ro-
tates the image represented by the INR. Following similar
principles, we can implement both translation and scaling
operations through appropriate weight transformations. For
INRs, we apply rotation, translation, and scaling augmen-
tations. Besides all these, we have proposed a more fine-
grained augmentation named bias perturbation. Different
to directly adding Gaussian noise to both weights and bi-

ases, we simple implement the disturbance to the biases. In
this way, a more fine-grained augmentation is applied due to
different activation value. In addition, for RGB images, we
have proposed a series of color jitter augmentations includ-
ing brightness adjustment, contrast adjustment and satura-
tion adjustment. See Fig. | for the example of our proposed
data augmentations.

4. Smooth Augmentation

This part mainlu derived from our previous work [45], here
we offer a condensed version of it. Neural networks require
smooth signals for effective convergence, yet weight ma-
trices typically exhibit non-smooth characteristics. To en-
able our Implicit Neural Representation (INR) to accurately
reconstruct these weights, we implement a smoothness-
preserving strategy through weight permutation.
Traditional approaches to weight permutation often treat
it as a Traveling Salesman Problem (TSP), which over-
simplifies the complex interconnections within neural net-
works. We identify three key issues with this approach:

* Weight matrix smoothness is better modeled as a Shortest
Hamiltonian Path (SHP) problem rather than a TSP, as
returning to the starting point is unnecessary.

e Permutations in one layer require corresponding adjust-
ments in connected layers to maintain functional equiva-
lence. For activation function o(-) and permutation pair
Pand P71

W;Po(P7'W,_1X) = Wioc(W;_1 X) 5)

* Improving smoothness along one dimension may degrade
it in another dimension.

We leverage a key insight: permutation in one dimension
does not affect total variation in the orthogonal dimension.
For a weight matrix W and permutation P:

TV(WP) =TVin(WP) + TV (W) (6)
TV (PW) = TVip(W) + TV, (PW) (7

We formulate the neural network as a dependency graph
G = (V,E) where operations with weights form nodes
and their connections form edges. We optimize permuta-
tions within each fully-connected clique C' = (Vg, Ec) C
G through a multi-objective Shortest Hamiltonian Path
(mSHP) problem:

s 3 (Vo PV + TV, 0P ) 8

eij€Ec

By converting this to a TSP with a dummy node and
solving via 2.5-opt local search, we efficiently determine
optimal permutations that preserve network functional-
ity while enhancing weight smoothness across the entire
model. With approximately 20 cliques per network, the to-
tal computation time remains under 4 seconds.



5. Equivariant Architecture

To construct our equivariant encoder, we follow the frame-
work established in [27]. The weight space V is decom-
posed into V = W & B, where W := ®Am4:1 W,, and
B = @%:1 B,, represent the weight and bias spaces,
respectively. The equivariant layer L is partitioned into
four mappings: Lyw : W — W, Ly, : W — B,
Lyy : B = W, and Ly, : B — B. These mappings are
implemented using standard equivariant operations (pool-
ing, broadcast, and linear layers) as described in [13, 46].
Our implementation follows the block matrix structure from
[27], with modifications to the layer configuration and an
additional projection layer.

6. Implementation Details

Our equivariant architecture is implemented with four hid-
den equivariant layers followed by a final invariant layer,
with the output equivariant feature dimension set to 128.
The training process consists of three distinct stages: First,
during the equivariant encoder pre-training stage, we em-
ploy the AdamW [19] optimizer with a weight decay of
Se-4 and a learning rate of Se-3. The encoder is trained
for 500 epochs with a batch size of 512. Second, in the
equivariance-guided diffusion stage, we utilize a squared
cosine beta scheduler [29] to modulate noise injection
across 1000 timesteps. For MLP sampling from the dif-
fusion process, we implement the Denoising Diffusion Im-
plicit Models (DDIM) [39]. For the transformer architec-
ture, we follow the modified version of minGPT [31] which
has 12 layers, 16 self-attention heads and 2880 hidden size.
The input MLP is flattened into a 1D vector and projects to
6 tokens (weight and bias from each layer form 2 distinct
tokens, our MLP has 3 layers, so that’s 6 in total). We also
incorporate an Exponential Moving Average (EMA) strat-
egy with 8 = 0.99 to enhance convergence stability. This
stage comprises 5000 epochs of training using the AdamW
optimizer with a batch size of 32 and an initial learning
rate of 2e-4, employing a decay schedule that reduces the
learning rate by 10% every 250 epochs. The equivariance
loss proportion parameter A is set to 0.1 unless otherwise
specified. The process of fine-tuning A is demonstrated in
subsequent sections Finally, during the few-shot fine-tuning
stage, we maintain identical configurations to the previous
stage while training for 250 epochs. At last, the subspace
disturbance parameter ~ in the generation process is set to
0.3 by default. All experiments are conducted on the Linux
server with two L20 GPUs.

7. Additional Experimental Results

Impact of few-shot sample numbers. As demonstrated in
Tables | and 2, our experimental results validate the consis-
tency of both quality and diversity metrics across varying

Table 1. Quantitative evaluation of different shot generation on
both MNIST-INRs, CIFAR-10-INRs.

Shots | MNIST-INRs | CIFARIO-INRs
ots

| FID, LPIPSt | FID| LPIPSt
1-Shot | 185.80 02169 | 202.70  0.2561
3-Shot | 143.55 0.2907 | 180.72  0.3319
5-Shot | 127.39  0.3355 | 165.43  0.3702
10-Shot | 121.24  0.4133 | 164.14  0.4926

Table 2. Quantitative evaluation of different shot generation on
ShapeNet-INRs.

Category | Shots | MMD| COV(%)T 1-NNA(%)/)
1-shot 4.8 20 85.2
Airplane 3-shot 4.1 26 79.5
5-shot 3.7 31 75.8
10-shot 34 35 73.0
1-shot 5.0 18 88.3
Car 3-shot 42 23 82.4
5-shot 3.8 27 79.1
10-shot 3.5 31 76.5
1-shot 5.8 25 79.5
Chair 3-shot 4.9 32 73.2
5-shot 4.5 37 69.8
10-shot | 4.2 41 67.1

quantities of few-shot support samples. The inverse rela-
tionship between sample size and learning complexity man-
ifests in the evaluation metrics: specifically, the FID for 2D
scenarios and MMD for 3D scenarios exhibit elevated val-
ues, indicating degraded generation quality with reduced
sample sizes. Similarly, for generative diversity metrics,
LPIPS for 2D and COV for 3D scenarios demonstrate per-
formance deterioration proportional to the reduction in sup-
port samples.

Additional ablation study. Similar results to 3D scenario
in the main paper are obtained. As illustrated in Tab. 3,
we conducted a detailed ablation analysis to evaluate the
distinct effects of weight space smooth augmentation and
equivariant subspace disturbance in 2D scenarios. The ex-
perimental results demonstrate that smooth augmentation
independently improves both generation quality and diver-
sity metrics. This finding corroborates that initialized from
an optimized state, the equivariant encoder achieves en-
hanced representational capacity through contrastive learn-
ing. In contrast, the application of subspace disturbance
alone yields higher diversity scores but exhibits a slight
degradation in generation quality when implemented with-
out smooth augmentation. This performance trade-off can



Table 3. Ablation study of weight space smooth augmentation
and equivariant space disturbance on MNIST-INRs and CIFAR-
10-INRs. Combined usage achieves optimal performance, while
individual modules demonstrate distinct contributions to quality
and diversity.

Dataset | Smooth  Disturbance | FID|  LPIPSt
X X 137.54 0.3357
v X 120.15  0.3466
MNIST-INRs x v 139.65  0.3988
v v 121.24 0.4133
X X 187.09 0.3974
v X 157.83 0.4175
CIFARI0-INRs X v 19257 0.4841
v v 164.14 0.4822
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Figure 2. The training loss of the equivariant encoder pre-training.
With and without smooth augmentation show notable differences
in terms of the converging speed and the final converged loss.

be attributed to the divergent categorical clustering of equiv-
ariant features under identical disturbance conditions, con-
tingent upon the presence or absence of smooth augmen-
tation. Notably, the concurrent implementation of both
components—smooth augmentation and subspace distur-
bance—yields optimal performance across all metrics.
Additional exploration of equivariant subspace. As a
complementary to the 2D t-SNE visualization of the equiv-
ariant space, we offer the training loss both with and with-
out the smooth augmentation on the MNIST-INRs in Fig
Fig. 2. A comparatively faster converging speed and an ob-
vious better final loss is obtained if the weights have been
smooth augmented.

Impact of subspace disturbance. Similar to 3D scenario
in the main paper, through quantitative assessment of equiv-
ariant subspace disturbance magnitude and its resultant ef-
fects on generative performance, as depicted in Fig. 6, we
identify a significant inverse relationship between sample
diversity and functional fidelity. Our analysis reveals that

Figure 3. Qualitative comparison of 3-shot generation results on
the plane category of ShapeNet-INRs dataset. Notable geometric
variations are exhibited across structural components, particularly
in the configuration of wings, engine placements, and nose cone
morphologies. Left: Support samples. Right: Generated samples.

Figure 4. Qualitative comparison of 3-shot generation results on
the chair category of ShapeNet-INRs dataset. Notable geometric
variations are exhibited across structural components, particularly
in the morphology of backrests, leg configurations, and cushion
designs. Left: Support samples. Right: Generated samples.

the magnitude of subspace disturbance demonstrates a pos-
itive correlation with generation variance. Empirical ev-
idence from Fig. 6(a) indicates that elevated disturbance
magnitudes correspond to increased LPIPS scores, signi-
fying enhanced inter-sample diversity. However, as evi-
denced in Fig. 6(b), this diversification manifests a con-
comitant degradation in generation quality, quantified by el-
evated FID metrics.

Qualitative results. To comprehensively evaluate the effi-
cacy of our EQUIGEN, we present additional examples from
the ShapeNet-INRs dataset, specifically demonstrating 3-
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Figure 5. Qualitative results of 3-shot generation on MNIST-INRs.
Compared to DAGAN, FIGR and INR2Vec, our method could
provide obvious more diverse results.
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Figure 6. The evaluation on MNIST-INRs and CIFAR-10-INRs
with respect to different subspace disturbance intensity. (a) Higher
disturbance leads to increased LPIPS, indicating greater sample
diversity. (b) However, larger disturbances result in higher FID,
reflecting decreased generation quality.

shot generation capabilities across both chair and plane cat-
egories. In the context of 3D shape, geometric diversity
serves as a critical evaluation criterion. Our analysis re-
veals obvious structural variations across key components:
in the plane category, we observe distinct modifications in
wing geometry, engine placement configurations, and nose
cone morphologies. Similarly, the chair category exhibits
diverse architectural features, manifested through variations
in backrest design, leg structure configurations, and cushion
geometries.

To intuitively compare the proposed EQUIGEN with
existing methods, we visualize the 3-shot generation on
MNIST-INRs. As demonstrated in Fig. 5, our approach
generates substantially more diverse outputs compared to
baseline methods, which suffer from mode collapse, ex-
hibiting minimal inter-sample variation in their generated
results. To facilitate detailed analysis, we rendered our INR-
based results at 56 x 56 resolution, leveraging INR’s capac-
ity for infinite-resolution rendering. Other baseline methods
are rendered at the standard 28 x 28 resolution.
Evaluation of equivariant subspace. To further assess
the success of mapping original weights into the equiv-
ariant subspace, we conducted additional evaluations be-
yond the qualitative visualizations in ??. Specifically, we
computed a Silhouette Score of 0.85 on CIFAR-10-INRs,
indicating strong clustering behavior in the projected sub-
space. Furthermore, we trained a simple 1-layer MLP clas-

sifier on the equivariant subspace representation, achieving
a classification accuracy of 92.01%, demonstrating that the
learned subspace effectively preserves task-relevant infor-
mation. These quantitative results confirm that the transfer
to the equivariant space is well-structured and meaningful.
Impact of INR-based data augmentation on contrastive
learning. Given the potential sensitivity of SimCLR-based
contrastive learning to data augmentation, we conducted an
ablation study on the influence of color jitter and bias distur-
bance on model performance. By evaluating classification
accuracy, we observed that applying color jitter augmenta-
tion led to a 7.08% increase, while bias disturbance aug-
mentation improved accuracy by 2.44%. However, our ini-
tial findings suggest that excessive augmentation—beyond
15% color jitter and 20% bias disturbance—induces mode
collapse, leading to degraded feature separability. These re-
sults highlight the importance of carefully tuning augmen-
tation parameters to balance diversity and stability in con-
trastive training.
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