
FirePlace: Geometric Refinements of LLM Common Sense Reasoning
for 3D Object Placement

Supplementary Material

In Section 6, we discuss the limitations and potential im-
provements to FirePlace, and comment on societal impact
in Section 7.

We elaborate on the designs of metrics (specifically the
energy and plausibility scores introduced in the main paper)
in further detail in Section 8.

We discuss the prompts and algorithms used in constraint
outline (Section 9), anchor object extraction (Section 10),
interaction surface extraction (Section 11) and continuous
parameter estimation (Section 12). We also share the im-
plementations of our constraint functions in Section 13.

In Section 14, we explain how we adapted Holodeck and
LayoutGPT for the object placement task, and discuss the
prompts used. Further details on the evaluation dataset is
provided in Section 15.

In Section 16, we show qualitative consequences of ab-
lations done in the main paper, and also do additional ex-
periments on the performance effects of scaling down in-
ference compute used in Batched Visual Selection, further
demonstrating the benefit of scaling inference compute for
the visual selection task.

In Section 17, we show the performance of FirePlace on
image inputs that depict a single example of an object place-
ment, where FirePlace is tasked to generate similar place-
ments. Finally, in Section 18, we show superior perfor-
mance of FirePlace over baselines (for both text and image
inputs), based on comparisons done by an MLLM.

6. System Limitations
Since our method uses MLLMs in every step of the place-
ment generation process (with the exception of Step 4 in
Figure 2), latency is a limitation of our approach. Our sys-
tem currently takes on the range of 30 seconds to 2 minutes
per object placement, depending on the number of prior ob-
jects within the scene (with more anchor object candidates,
Batched Visual Selection must select among more options,
creating more calls to the MLLM) and the number of sur-
faces that get extracted. Additionally, much of the compu-
tation time was used for rendering object placements. For
our experiments, we only used CPUs for FirePlace, so it is
likely possible to be sped up using GPU rendering.

Figure 6 shows some qualitative examples of common
failure cases for FirePlace. They often come from inter-
sections between the placed objects and preexisting ob-
jects within the environment (which can be addressed us-
ing intersection constraints), or failure to generate com-
prehensive sets of constraints (leading to under-constrained

Figure 6. Common failure modes. On the left, the placement of
the object overlaps with preexisting objects, due to the constraint
library not including a constraint to minimize intersections. In the
middle, the placement of the chair was not constrained beyond
contact to the ground, but additional constraints should have been
generated (such as parallelism between the backs of the masked
chair and the adjacent chair). On the right, the plausibility pruning
step failed to remove implausible placements in the event of under-
constrained placements (the bottom of the books are in contact
with the table, but is overhanging), leading to a placement result
that features the book floating over the edge of the table.

Figure 7. When surface extraction is done in canonical space,
but the object is rotated in world space. A failure case where a
stack of books is placed under a shelf because contact constraints
were enforced for a upward-pointing (in the canonical space) sur-
face of the shelf that has been rotated by the artist in its final po-
sition in the world frame.

placements), or failure to prune the set of generated place-
ments, often when the item being placed is small compared
to the rest of the scene. In other cases, FirePlace may
choose the incorrect object for the anchor object or the in-
correct surfaces of objects, a limitation inherited from exist-
ing MLLMs. As MLLMs improve, we expect these issues
to be mitigated.

Our surface extraction method extracts surfaces of an-
chor objects in canonical space. This assumes that sur-
faces of anchor objects that are pointing, say, upwards in
the canonical space are also pointing upwards in the world

space once the anchor object is transformed. In rare cases
within our dataset, this is not a valid assumption, the resul-
tant optimized placements reflect this. An example can be
seen in Figure 7.

7. Societal Impact
We do not foresee any substantial negative impacts of our
work, beyond the inheritance of potential bias that may al-
ready be inside the MLLMs that currently exist. We antici-
pate that ongoing and future efforts in reducing MLLM bias
will mitigate this.

8. Design of Metrics
Evaluating object placement is tricky. On the one hand,
we have a groundtruth placement created by human artists
with which we can compare generated placements, but such
groundtruth accounts for only one of many possible object
placements (e.g. consider placing a cup on a table). To mit-
igate this, energy and plausibility scores guard against the
“precision” and “recall” of the constraint functions that are
generated.

Consider the simple example of placing a cup on top of
a table. Our system creates constraint functions that should
be minimally valued at the groundtruth positions. This is
what the energy score communicates – the proportion of
constraint functions constructed that are minimal (< 0.01)
when evaluated on the groundtruth placement generated by
the human artist. If energy score is 1, this means that all the
constraint energy functions generated for placing the cup
(e.g. parallel constraints between bottom of cup and the top
of the table) are “correct” according to the one groundtruth
example. The energy score can be low when the placement
is over-constrained, or when the constraint functions have
low “precision”.

On the other hand, what if the constraints are under-
constrained? The plausibility score seeks to measure this.
Assume that the parallel constraint mentioned above was
the only one generated. As you may imagine, many solu-
tions satisfying this constraint would render the object float-
ing in parallel to the table, but not necessarily in contact or
within the tabletop’s perimeter. This would score poorly on
plausibility by the MLLM, since many final renderings will
display placements that are not physically realistic or dis-
agreeing with the input text prompt (see Figure 8 for exam-
ples). In this case, the plausibility score will indicate that
the placement is under-constrained, or that the constraint
functions have low “recall”. The prompts (and rubric) used
to evaluate the plausibility score are given in Figure 21.

Prior works like [49] use MLLMs for evaluation, and
have shown through human evaluations that MLLM evalu-
ations are aligned with human preferences. In this paper,
we observe the same for the plausibility score. As shown

in Figure 8, plausibility scores capture the extent to which
placements are physically feasible and semantically plausi-
ble. Additionally, as noted in the main paper, when using
plausibility scores to decide the better placement between
two samples, they agree with humans 89.92% of the time,
when using Gemini 1.5 Pro. See Section 4.3 for more.

9. Constraint Outline Generation
We use the prompt shown in Figure 23 to query the
MLLM to generate constraint outlines. As part of the
prompt, we also provide the rendering of the input 3D
scene ([Source Layout Rendering]), the input text prompt

([Placement text prompt]) and a doc string describing the
constraint functions within our constraint function library
([Constraint library doc string]). The contents of this doc
string is shown in Figure 22.

10. Extraction of Anchor Objects
We use Batched Visual Selection to select for object in-
stances that match language descriptions of the anchor ob-
jects from the constraint outline. Beyond the procedure out-
lined in Algorithm 2, we use the prompts shown in Fig-
ure 24 to select among every batch. The result of doing so
is shown in Figure 9. Their image segmentation masks are
derived from the USD rendering process of the input 3D
scene.

11. Extraction of Surfaces
To execute the surface extraction steps in Algorithm 1, we
will first describe how DirExtr() works, then elaborate on
the geometric processing underlying SurfExtr().

In DirExtr() the MLLM is prompted to generate sur-
face normals that match the language descriptions of the
surfaces that best match the constraint outline descriptions
of surfaces that participate in the constraint. For instance, if
the transformable object should be sitting on the seat of the
chair, the surface that should be extracted from the chair
should be pointing upwards (i.e. the seat). This is done
through the prompt shown in Figure 25. Note that in our
experiments, we provide the MLLM with the 6 major di-
rections (left, right, front, back, up, down) that surfaces can
point, but our method can also work with more directions
by updating the prompt accordingly. After this is done for
the anchor and transformable objects, geometric processing
algorithms are then called to extract the surfaces that point
in these directions.

To this end, we first filter the faces of the object mesh to a
subset that have face normals within some threshold level of
cosine similarity with the unit vectors corresponding to the
extraction direction generated in the previous step. For the
faces that have similar face normals to the extraction direc-
tion, we project the center of these faces along the desired

Figure 8. Examples of plausibility scores for different placements. The text prompts are shown on the left, and objects placed are shown
on the right. A plausibility score of 4 is the maximum, and a 1 is the minimum. Refer to Figure 21 for the definitions of these scores.

surface normal, then cluster them using DBSCAN. This al-
lows us to find different sets of faces that lie along a similar
“level” along the desired surface normal. Faces in each set
are then projected to the same level before a convex hull
is fitted onto that group, which extracts a flat convex hull
tightly circumscribing each set. Each of these planar convex
hulls is an interaction surface candidate, and has a surface
normal equal to the extraction direction.

This process leads to many candidate interaction sur-
faces and, depending on the level of geometric complexity
of assets, may be prohibitively cumbersome/expensive/dif-
ficult to filter down to one using Batched Visual Selection.
As such, we merge interaction surfaces that are close to
each other within a certain distance threshold by keeping
the interaction surfaces that have a larger area. Addition-
ally, we recognize that many constraints can be adequately
expressed using bounding box constraints, so we append the
bounding box surface aligned with the extraction direction
to the set of candidate interaction surfaces.

The process of choosing the correct interaction surfaces

for the anchor and transformable objects is very similar to
that of choosing the anchor object (See Section 10). We
render the surfaces overlaid on top of the original object
mesh using matplotlib, taking care to show no greater
than 3 candidates for every batch. The selection is done
according to the prompt shown in Figure 26.

Figure 15, Figure 16, Figure 17, Figure 18, Figure 19,
Figure 20 show examples of the constraints constructed by
FirePlace for different placement tasks using the surfaces
extracted by this approach.

12. Parameter estimation
Once interaction surfaces of the anchor and transformable
objects are extracted, we prompt the MLLM with render-
ings of the scene and matplotlib renderings of the in-
teraction surfaces, according to the prompt shown in Fig-
ure 27. A documentation of the meaning of the continuous
parameters of each constraint function is also provided. In
our setting, only two of the constraint functions have contin-
uous parameters (CloseTo and FarFrom); namely, max-

Figure 9. The batched visual selection process for a scene with
only a few items. Here, the MLLM is tasked to find the anchor ob-
ject corresponding to “the white cabinet” from a constraint outline
generated. Each batch shows 3 options rendered in different colors
(for batch size = 3), and the MLLM chooses object instances that
best match the description by indicating the color of the mask in
each round. The chosen instances across each batch are merged
and the process is repeated until only one object instance is cho-
sen. This is done using the prompt shown in Figure 24.

imum/minimum distances between the two interaction sur-
faces.

13. Constraint functions
The constraint functions outlined in Section 3.4 are imple-
mented as binary functions that evaluate to 0 when a geo-
metric relationship is satisfied between two interaction sur-
faces, p1 and p2. Below, we describe the implementations
of each:
1. Parallel(p1, p2) returns

min(|1→ nT
1 n2|, |→ 1→ nT

1 n2|)

where n1 is the surface normal of p1 and n2 that of p2.
This function is minimal when either the surface normals
are aligned, or pointing in parallel but opposite direc-
tions.

2. CloseTo(p1, p2, dist) returns

kmax(d(p1,p2)→ dist, 0)

for some scaling constant k (which we set to 0.1) and
distance function d between two interaction surfaces.
This function is minimal when d(p1,p2) is smaller than
dist.

3. InFrontPlane(p1, p2) first finds the pairwise
vector differences between the vertices of p1 and p2,

then evaluates the dot product between each vector dif-
ference and the surface normal of p1, n1. The return
value of this function is

min(0,max({→ vij
|vij |

T
n1}ij))

for all vector differences vij between the ith vertex in p1
and the jth vertex in p2.

4. Contact(p1, p2) is

InFrontPlane(p1,p2)+InFrontPlane(p2,p1)

which is minimal when p1 and p2 are either in contact
with each other or coplanar.

5. NoOverhang(p1, p2) is more involved. Let p1 be
the set of vertices of p1 (with N vertices and 3 coordi-
nates, p1 ↑ RN→3) and p2 be that of p2. Let n2 be the
normal vector of p2. We then first project p1 onto p2,

p1|p2 = p1 → ((p1 → o) · n2)n2

for some arbitrary vertex o from p2. Then, we sample
1000 points from the region bound by p1|p2, which we
call q ↑ R1000. We can then calculate whether q is con-
tained within the bounds of p2. The final output value of
this function is defined as

1→ 1

1000

1000∑

i=1

Iinside(qi)

where Iinside is an indicator function indicating whether
qi lies on the inside of p2. The function is minimal when
the projection of p1 onto p2 is entirely contained within
p2 (i.e. ↓i, Iinside(qi) = 1).

14. Prompts and Constraint Functions for
Holodeck and LayoutGPT

For the Holodeck and LayoutGPT baselines in our exper-
iments, we use the prompts shown in Figure 28 and Fig-
ure 29 for Holodeck, and Figure 30 for LayoutGPT. Note
that we use the prompts found in the implementations re-
leased on github 1, modified only to provide additional in-
formation about the objects that already exist within the
scene. To do this, we use Gemini to caption object ren-
derings of assets found within the scene, and provide these
captions to both methods via the prompts.

For LayoutGPT, we provide the caption of each object
alongside their bounding box information (length, width,
height, left, top, depth, orientation) as part of the prompt.
These can be derived from their local-to-global transforma-
tion matrices, as well as the length, width, height of their
bounding boxes in canonical space.

1Official Holodeck prompts and official LayoutGPT prompts

https://github.com/allenai/Holodeck/blob/main/ai2holodeck/generation/prompts.py
https://github.com/weixi-feng/LayoutGPT/blob/master/run_layoutgpt_3d.py

For Holodeck, these captions (e.g. “a
brown curtain”) are provided alongside ob-
ject ID’s (e.g. object-34), indicated by
[Descriptions and labels of preexisting objects in the scene]

in Figure 29. Holodeck can then reference the object ID’s
in the construction of the bounding box constraints. For the
bounding box constraints used by Holodeck, we implement
bounding box constraints as binary constraint functions,
similar to those in Section 3.4, with the big difference
being that they operate on bounding boxes instead of
interaction surfaces. The Holodeck baseline has access
to a bounding box constraint library composed of the
following constraints: (1) FaceTo (that the front face
of the object bounding box faces the center of another
bound box), (2) near (that objects are closer than 150 cm
from each other and further than 50 cm away) (3) far
(object are further than 150 cm away from each other) (4)
infront, (5) sideof, (6) leftof, (7) rightof, (8)
behind, (9) ontop, (10) centeraligned_front,
(11) centeraligned_side. These are all bounding
box constraints originally used in the Holodeck imple-
mentation. For comparisons between Holodeck and
FirePlace, we use the same constraint solver (with the same
parameters) to solve constraints created by both methods.

As mentioned in the paper, experiments on FirePlace,
LayoutGPT, Holodeck all use the same MLLM (Gemini
1.5Pro) for a fair comparison.

15. Evaluation Dataset
All scenes used for evaluation of our method and the base-
lines are in Universal Scene Descriptor (USD) format,
which contains meshes of all objects, architectural elements
and photorealistic materials. When choosing the trans-
formable objects for each placement task, our goal was to
choose objects for which the correctness of its final position
depends on the successful identification of “anchor” objects
and the relevant constraints. As such, the transformable ob-
jects selected for our evaluation placement tasks are often
furniture pieces (chairs, tables, refrigerators ...etc) and dec-
orative items (books, picture-frames, wall art...etc). Fig-
ure 10 shows the distribution of the number of possible “an-
chor” objects in each of the placement tasks composed of ar-
chitectural elements and furniture/household objects. This
motivates the need for Batched Visual Selection to make the
visual selection task easier by breaking down the decision
process into multiple stages.

16. Ablations
16.1. Qualitative Examples of Ablations
The ablations tested in Table 3 have qualitative conse-
quences on the placements that get generated. Figure 11
and Figure 12 show this for two placement tasks. Note that

Figure 10. Distributions of the number of objects (furniture and
architectural elements) within the placement tasks used for evalu-
ation.

in both cases, the transformable object must be placed into
a shelf-like object, and that it’s crucial to have access to the
low-level geometry, which bounding box representation do
not provide (“→ Geometry”). In both cases, purely using the
MLLM to choose among randomly generated placements
leads to suboptimal placements, oftentimes creating final
placements that feature the object floating in air (e.g. “→

Figure 11. An example of the effects of ablations in Table 3 on the
placements. In this example, FirePlace is tasked to place the coat
into the closet.

Figure 12. An example of the effects of ablations in Table 3 on the
placements. In this example, FirePlace is tasked to place the bottle
on the cabinet.

Constraints” in Figure 12 shows the bottle floating slightly
above the ground). We can also see that plausibility prun-
ing tends to get rid of implausible overlaps that may happen
when placing the object according to raw geometric con-
straints – in both Figure 11 and Figure 12, removing plausi-
bility pruning (“→ Com. Sense”) leads to final placements
that overlap with assets already in the scene. Finally, remov-
ing the ability to visually select anchor objects (as opposed
to selecting anchor objects based on text annotations) and
removing the ability to scale inference compute for Batched
Visual Selection both lead to incorrect placements, due to
the wrong anchor object/surfaces being selected for the con-
straints.

Figure 13. Increasing the batch size within Batched Visual Selec-
tion leads to lower performance on placement tasks.

Metric LayoutGPT Holodeck Ours

Min L2 error cm (↔) 126.19 91.25 43.69
Mean l2 error cm (↔) 166.11 136.51 68.84

Visibility score (↗) 0.69 0.59 0.88
Plausibility score (↗) 2.31 1.99 2.92

Energy score (↗) – 0.17 0.38

Table 4. Comparison with Baseline for image inputs

16.2. Inference Compute Scaling for Batched Visual
Selection

Figure 13 displays the trends on the performance metrics
as we increase the batch size (lower the level of inference
compute) used by Batched Visual Selection. This means
that for the selection process of anchor objects and inter-
action surfaces, an MLLM must choose among larger sets
of options at a time. We can observe a downward trend in
plausibility and energy scores (due to incorrectly selected
object instances and and interaction surfaces), and also an
upward trend in both mean and minimum L2 errors, sug-
gesting that the resultant placements become further away
from the groundtruth as MLLMs are prompted to choose
among more and more visual options at a time. Our de-
fault settings uses a batch size of 3, and for Figure 13, we
increase the batch size to 6, 20, 50 and 100.

Figure 14. Qualitative results of object placement when FirePlace is given image inputs of placement examples. Note how generated
placements follow the semantics of object placements shown in the input image to varying degrees, but can vary in their final positions.

17. Performance on Image Inputs
Since FirePlace uses an MLLM for constraint outline gen-
eration, an additional input modality that we can demon-
strate – besides language annotations – is an image exam-

ple. Given an image showing one possible placement of the
object, FirePlace can generate variations of placements that
are semantically similar in the sense that output placements
capture the underlying constraints and placement consider-
ations of the image example. Table 4 shows that our method
also outperforms the baselines across the metrics on this
task. Figure 14 shows object placements generated from
our system when given different placement examples. For
this experiment, the prompts of our method, Holodeck, and
LayoutGPT are changed accordingly to insert the image ex-
ample instead of a text prompt, as done for the experiments
in the main paper.

18. Using MLLMs to Compare FirePlace to
Baselines

In addition to the human evaluations that indicate Fire-
Place’s superior performance, we can also use MLLMs to
do pairwise comparisons, by giving it shuffled pairs of ren-

derings (image A and B) generated by our method and the
two baselines. The objective (text input or image input) is
also provided to the MLLM. The prompt used is shown be-
low:

Between Image A and Image B, which is a
better match to the objective, in

terms of its placement of the object
masked in red?

Describe the scene and describe the
object masked in red (what is it?
Where should the object be according
to the objective?), then respond

with ’first’ or ’second’ in json:

‘‘‘json
{
"final_answer": "A"/"B"

}
‘‘‘

The results generated with Gemini 1.5Pro for text inputs
is shown in Table 6 and the result for image inputs (See Sec-
tion 17) is shown in Table 5, showing FirePlace’s superior

vs. LayoutGPT vs. Holodeck

LayoutGPT wins - 0.56
Holodeck wins 0.44 -

Ours wins 0.72 0.72

Table 5. Win-rate comparison between our method and Lay-
outGPT and Holodeck according to Gemini 1.5Pro as judge, for
placement tasks with image input.

vs. LayoutGPT vs. Holodeck

LayoutGPT wins - 0.54
Holodeck wins 0.46 -

Ours wins 0.70 0.72

Table 6. Win-rate comparison between our method and Lay-
outGPT and Holodeck according to Gemini 1.5Pro as judge, for
placement tasks with text input.

performance over both baselines in both task settings.

Figure 15. The constraints and interaction surfaces generated for the task of mounting a TV. For clarification, the contact constraint is
enforced between the back of the TV and the wall (visualized as a plane). Note that there are multiple wall meshes within this scene (for
instance, see Figure 9 – blue in Batch 3 and cyan in Batch 2 are both alternatives), and that Batched Visual Selection chooses the correct
one

Figure 16. To place the small table into the scene, the constraints generated first identifies a Contact constraint between the bottom of the
table and the floor, then uses various CloseTo constraints to capture its rough position in the room - the final position generated is close to
all 3 surfaces chosen.

Figure 17. Similar to Figure 17, FirePlace enforces a contact constraint with the floor, then uses CloseTo constraints to restrict plausible
placements.

Figure 18. Placing a piano into the room. FirePlace successfully discerns that the left and the right of the piano must be close to different
things, and that the right side should be closer to the left of the curtains, and the left should be closer to the bed.

Figure 19. Placing the lamp in the living room is done by locating near-by objects and enforcing CloseTo constraints.

Figure 20. The desk is L-shaped, meaning that in order to insert place the desktop, it must correctly extract the top of the desk, and not
just use the top face of the desk’s bounding-box. We see here that it enforces Contact and NoOverhang constraints to the table, guides the
placement according to other CloseTo constraints.

The desired placement of the object masked in red can be described by:
[Placement text prompt]

The predicted placement of the object is shown in the predicted image below:
[Masked rendering of predicted final placement,

with placed object in semi-transparent red mask.]

Please grade the predicted placement of the predicted placement of the object
masked in red on a scale of 1-4, where:

1 = either the target object is not observed at all within the scene, or the
placement is physically implausible (e.g. the object is floating in the air
or intersecting with other objects)

2 = The object is observed within the scene, but its placement differs
substantially from the placement observed in the reference image.

3 = The object is observed within the scene, and its placement is sensible (e.g
. the target object is NOT floating in air or intersecting with other
objects), and the placement of the target object is different from the
reference image, but not in substantial ways.

4 = a totally sensible placement of the target object, and captures both valid
physics (e.g. the target object is NOT floating in air or intersecting with
other objects) as well as considerations for function, accessibility, and
aesthetics.

Please reason about what is in
Describe the scene and describe the object masked in red (what is it? Where

should the object be according to the objective?), then respond with the
final score in json:

‘‘‘json
{
"final_answer": 1/2/3/4

}
‘‘‘

Figure 21. Prompt for extracting plausibility scores.

* Contact (surface1, surface2)
Enforces that surface1 and surface2 are in contact with each other.

* FarFrom (surface1, surface2, const)
This enforcs that surface1 and surface2 are at a AT LEAST some distance away

from eachother specified by const, a float in CENTIMETERS in the life-
size 3D scene.

* CloseTo (surface1, surface2, const)
This enforcs that surface1 and surface2 are AT MOST some distance away from

eachother specified by const, a float in CENTIMETERS in the life-size 3D
scene.

* Parallel (surface1, surface2)
This enforces that surface1 and surface2 are parallel.

* Above (surface1, surface2)
This enforces that surface1 is ABOVE surface2 (note the order.) This does

NOT ensure that the birdseye view of object1 and object2 overlap.
* NoOverhang (surface1, surface2)
This enforces that surface1’s vertical projection is entirely contained in

surface2’s projection. This is good when you’d like one surface to be
entirely contained within another, for instance for physical stability.

Also, if you ever want to ensure contact with floor, make sure to use
NoOverhang as well.

Figure 22. Prompt for constraint documentation

[Source layout rendering]

The following text describes the target object that we would like to place in
the image above: [Placement text prompt]

In each of the reference images below, a target object is masked in red. Even
though this may be different from the target object just mentioned and even
though the scene may be different, the placements of the object shares
underlying patterns and structure across the scenes.

You are given a library of the following functions:
above: [Constraint library doc string]

For the {item_to_focus_on}, return a json that has a list. Each element of the
list specifies:

1) in the field called ’constraints’: the constraint function (e.g. Parallel)
2) in the field called ’surface1’ a string describing surface1 -- if it’s a

surface on the target object (or collection of objects), refer to it as the
’target object’. (e.g. bottom of the target object)

3) in the field called ’surface2’ a string describing surface2 -- if it’s a
surface on the target object (or collection of objects), refer to it as the
’target object’. (e.g. top of the table in the corner of the room)

Return a json marked by ‘‘‘json at the very beginning, with a list of ALL of
the constraints that is relevant to the {item_to_focus_on}.

NOTE: since none of the objects are floating in the scene, ALWAYS start off the
list with a CONTACT constraint. What is the target object in contact with?

Which surface of the target object is in contact with something else?

NOTE: specify distance relations between objects using the constraints ‘CloseTo
‘ and ‘FarFrom‘, by spcifying which surfaces on the target object and the
surounding objects are relevant to these distance relations.

For instance, if the target object is a potted plant at the corner of the room,
you would use the CloseTo distance relation with respect to one side (left

or right) of the plant, the surface of the correct wall, and another CloseTo
distance relation between the back side of the plant and the other wall

forming the corner.
Alternatively, if the target object is something mounted on the wall above

something else, it would make sense to specify FarFrom constraint between
the bottom surface of the target object and the surface of the object
underneath.

Note that in both cases, you must specify a threshold distance in Centimeters.
Use the assumption that the scene is real-life sized in 3D.

You are allowed to return an empty list if nothing is relevant to the
description of the desired physical relation above.

Figure 23. Prompt for constraint outline generation

The following text describes the target object to be placed into the scene:
[Placement text prompt]

The target object is related to another ’anchor’ object within the scene by the
physical relation: [Constraint outline]

The surface of that ’anchor’ object in the physical relation can be described
by: [constraint outline]

We refer to this object as the anchor object.

In the following image, I want you to find the anchor object among the
segmentation masks I show in different colors.

What is the color of segmentation mask of the the anchor object in the
following image?[concat color names /none]

[Insert masked rendering of anchor objects]

I want you to reason about it, then output a json, like:
‘‘‘json
{’final_answer’: " concat color names /none"

}
‘‘‘
respond with ‘none‘ if none of the segmentation masks in the image match the

anchor masked object.

Figure 24. Prompt for extracting anchor objects

The following image shows our "anchor" object in a semi-transparent red mask.

[insert masked rendering of anchor object]

Here’s a 3D plot of the [ANCHOR/TARGET] object in its canonical space.
In this plot:
The direction ’upwards’ is described by the positive z direction. (down is

negative)
the direction ’right’ is described by the positive x direction. (left is

negative)
the direction ’forwards’ id described by the negative y direction. (backwards

is positive)

[Insert 3D plot of ANCHOR/TARGET object]

And the following text describes the target object: [Placement text prompt]

You’ve decided the following must be true:
[Constraint outline]

Think about the [ANCHOR/TARGET] object. Which object does that correspond to
in the above?

Think about the surface where the interaction between the two objects is
happening. Which way is it pointing on the [ANCHOR/TARGET] object?

I’d like you now to tell me how you would extract the relevant surfaces from
our [ANCHOR/TARGET] object relevant for the placements described above. The
definition of a relevant surface is one that is involved in physical

constraints. If something is supposed to be to the RIGHT of this object,
then it makes sense that a surface pointing to the right is relevant, since
that surface can be usd to judge whether the object is truly to the right of
the object.

If the anchor object were a table, and the target object is to be put onto the
table then the relevant surface of interaction for the ANCHOR OBJECT is
pointing UPWARDS. The surface of interaction for the TARGET OBJECT is
pointing downwards.

The surface you extract does NOT NEED TO BE in physical contact with the other
object. For instance, if a distance is to be maintained between two objects,
think which surface is most relevant in that distance calculation.

I want you to reason about it, then output a json to specify the direction of
the surface in the [ANCHOR/TARGET] object relevant to the interaction, like
:

‘‘‘json
{’final_answer’: up/down/left/right/front/back}
‘‘‘
You cannot return the word ’none’.

Figure 25. Prompt for extracting object surface directions.

The following image shows our "anchor" object in a semi-transparent red mask.

[Insert masked rendering of ANCHOR object]

Here’s a 3D plot of the [ANCHOR/TARGET] object in its canonical space.
In this plot:
The direction ’upwards’ is described by the positive z direction. (down is

negative)
the direction ’right’ is described by the positive x direction. (left is

negative)
the direction ’forwards’ id described by the negative y direction. (backwards

is positive)

[Insert 3D plot of ANCHOR/TARGET object]

And the following text describes the target object: [Placement text prompt]

You’ve decided the following must be true:
[Constraint outline]

Think about the [ANCHOR/TARGET] object. Which object does that correspond to
in the above?

Think about the surface where the interaction between the two objects is
happening. Which surface ([LIST OF COLORS]) is relevant to the interaction?

I want you to reason about it, then output a json to specify the the surface in
the [ANCHOR/TARGET] object relevant to the interaction, like:

‘‘‘json
{’final_answer’: " [LIST OF COLORS] /none"

}
‘‘‘

Figure 26. Prompt for choosing object surfaces based on the color of the surface in the visualization.

The following image shows our "anchor" object in a semi-transparent red mask.

[Insert masked rendering of ANCHOR object]

Here’s a 3D plot of the [ANCHOR/TARGET] object in its canonical space.
In this plot:
The direction ’upwards’ is described by the positive z direction. (down is

negative)
the direction ’right’ is described by the positive x direction. (left is

negative)
the direction ’forwards’ id described by the negative y direction. (backwards

is positive)

[Insert 3D plot of ANCHOR/TARGET object]

And the following text describes the target object: [Placement text prompt]

You’ve decided the following must be true:
[constraint outline]

In order to enforce this constraint, there’s a few parameters you must specify.
Use your visual judgment to determine the best values for the following

parameters:
[Arg documentation string for each constraint function]

For the target object, you chose the surface visualized below:

[Colorized visualization of the target object and the interaction surface chosen]

For the anchor object, you chose the surface visualized below:

[Colorized visualization of the anchor object and the interaction surface chosen]

What approximation of the parameters make the most sense, given the surfaces
that you’ve chosen, and the constraint you’ve chosen to enforce?

Return a json with each value specified in the json. Begin the json with ‘‘‘
json.

Figure 27. Prompt for estimating continuous parameters

You are an experienced room designer.

Please help me arrange objects in the room by assigning constraints to each
object.

Here are the constraints and their definitions:

1. distance constraint:
1) near, object: near to the other object, but with some distance, 50cm <

distance < 150cm.
2) far, object: far away from the other object, distance >= 150cm.

2. position constraint:
1) in front of, object: in front of another object.
2) around, object: around another object, usually used for chairs.
3) side of, object: on the side (left or right) of another object.
4) left of, object: to the left of another object.
5) right of, object: to the right of another object.
6) behind of, object: behind another object.
7) in front of, object: in front of another object.
8) ontop of, object: on top of another object.

3. direction constraint:
1) face to, object: facing another object.

4. alignment constraint:
1) center aligned top, object: align the center of the object with the

center of the TOP of another object.
2) center aligned front, object: align the center of the object with the

center of the FRONT of another object.
3) center aligned side, object: align the center of the object with the

center of the SIDE of another object.

Figure 28. Prompt for Holodeck (Part 1) – For part 2, see Figure 29.

For each object, you can select various numbers of constraints and any
combinations of them and the output format must be:

object | constraint 1 | constraint 2 | ...
For example:
coffee table-0 | near, sofa-0 | in front of, sofa-0 | center aligned front,

sofa-0 | face to, sofa-0
tv stand-0 | far, coffee table-0 | in front of, coffee table-0 | center aligned

front, coffee table-0 | face to, coffee table-0
desk-0 | far, tv stand-0
chair-0 | in front of, desk-0 | near, desk-0 | center aligned front, desk-0 |

face to, desk-0
floot lamp-0 | near, chair-0 | side of, chair-0

Here are some guidelines for you:
1. The objects of the *same type* are usually *aligned*.
2. When handling chairs, you should use the around position constraint. Chairs

must be placed near to the table/desk and face to the table/desk.

In the above examples, "coffe table-0", "sofa-0", "tv stand-0", "desk-0", "
chair-0", "floot lamp-0" are all object IDS

in the scene. In reality, the object IDs look more like "object-0", "object-1",
...

i.e. object-1 | in front of, object-2 | near, object-2 | face to, object-3

Here is a list of preexisting objects in the scene, in the format [object_id]:
[object_description]

[Descriptions and labels of preexisting objects in the scene]

Here is the object that I want to place in the room (object id of it is object-
target):

[Description of transformable object]
Please first use natural language to explain your high-level design strategy,

and then follow the desired format *strictly* (do not add any additional
text at the beginning or end) to provide the constraints for the object.

Figure 29. Prompt for Holodeck (Part 2) – For Part 1, see Figure 28.

Instruction: synthesize the 3D layout of an indoor scene. The generated 3D
layout should follow the CSS style, where each line starts with the
furniture category and is followed by the 3D size, orientation and absolute
position. Formally, each line should follow the template:

FURNITURE {length: ?cm; width: ?cm; height: ?cm; left: ?cm; top: ?cm; depth: ?
cm; orientation: ? degrees;}

All values are in cm but the orientation angle is in degrees.

Here are the info of other objects within the scene:
[List of objects inside the scene, colon separated from

their width, height, left, top, depth and orientation information.]

Generate a line for an object described by the following:
[Description of transformable object]

Figure 30. Prompt for LayoutGPT

	. Introduction
	. Related Works
	. Method
	. Constraint Outline Generation [Stage 1]
	. 3D Reasoning for Feasibility [Stages 2-4]
	. Plausibility Pruning [Stage 5]
	. Constraint Library
	. Batched Visual Selection

	. Experiments
	. Dataset, Metrics & Baselines
	. Qualitative Examples & Baseline Comparisons
	. Human Evaluations
	. Ablation Studies

	. Conclusion & Discussion
	. System Limitations
	. Societal Impact
	. Design of Metrics
	. Constraint Outline Generation
	. Extraction of Anchor Objects
	. Extraction of Surfaces
	. Parameter estimation
	. Constraint functions
	. Prompts and Constraint Functions for Holodeck and LayoutGPT
	. Evaluation Dataset
	. Ablations
	. Qualitative Examples of Ablations
	. Inference Compute Scaling for Batched Visual Selection

	. Performance on Image Inputs
	. Using MLLMs to Compare FirePlace to Baselines

