From Sparse to Dense: Camera Relocalization with Scene-Specific Detector from
Feature Gaussian Splatting

Supplementary Material

A. Feature Gaussian Training

Our training strategy references Feature 3DGS [70]. To
adapt the feature field for the localization task and improve
robustness, we make the following modifications:

1. Thanks to the development of the CUDA accelerated ras-
terization tool gsplat [63], we can efficiently render fea-
ture maps while preserving the original feature dimen-
sions, eliminating the need for the speed-up module pro-
posed in Feature 3DGS for upsampling feature channels
after rasterization. Specifically, the feature f stored in
the Gaussian primitive g has the same dimension D as
the feature map F;(I) extracted using the general local
feature extractor. This also enables direct matching be-
tween the 2D query features and the 3D features of the
Gaussian primitives.

2. The rendering process for the radiance field of Feature
Gaussian is based on the alpha blending rasterization
method [33]. Let A denote the set of Gaussians asso-
ciated with a pixel, sorted in front-to-back order. The
pixel color C' is computed by blending the color ¢ of
Gaussians as follows:

C=> cal, ®)
ieN
where T; is the transmittance factor accounting for the

accumulated opacity « of all preceding Gaussians, de-

fined as:
i—1

Ti = (1 —Oéj). (9)

j=1

This alpha blending approach is also applied to render
the feature field. However, due to the vector triangle
inequality, directly accumulating features is unsuitable.
To address this, we introduce L2 normalization into the
alpha blending formula. Specifically, we normalize the
Gaussian feature f before rasterization to mitigate the
influence of feature magnitude, and we further normal-
ize the accumulated features after rasterization. The final
rendered feature F is therefore expressed as:

F, = norm (Z norm(fi)oziﬂ) , (10)

i=1

where norm(-) denotes the L2 normalization operation.
This two-step normalization process ensures stability
and robustness in the feature field training and render-
ing.

Module Time (ms)
Feature Extraction 3.7
S.S.D. 6.4
Sparse Matching 17.4
Pose Estimation (Sparse) 15.8
Rasterization 23
Dense Matching 13.2
Pose Estimation (Dense) 72.8
Total 152.3

Table A. Detailed Time Consumption Analysis.

B. Matching-Oriented Sampling Algorithm

The algorithm of the matching-oriented sampling strategy
is illustrated in Algorithm 1.

C. Qualitative Analysis

Challenging Cases. In Fig. B Fig. C, we present the lo-
calization results of STDLoc in challenging scenarios in-
volving weak texture and varying illumination conditions.
For illumination changes, we demonstrate sample cases
from both the Cambridge Landmarks dataset and real scene,
where STDLoc achieves precise localization results. In the
weak texture scenario, we provide a comparative analysis
with HLoc in the Stairs scenario from the 7-Scenes dataset.
STDLoc extracts denser matches, enabling more accurate
pose estimation.

Failure Cases. As shown in Tab. 5, the recall of (5m,
10°) in the dense stage is slightly lower than that in the
sparse stage. The localization results for these failure cases
are illustrated in Fig. A. The first column is the query image,
the second column is the sparse matching result between
the query image and landmarks, and the third column is the
dense feature map of the query image and the feature map
rendered based on the sparse stage localization pose.

The sparse stage successfully provides an accurate pose
estimation, but the feature map rendered in the dense stage
is indistinct, leading to the failure of dense matching. This
lack of distinguishability in the dense feature map is caused
by floaters in the scene, which is a common issue in 3DGS
[21] scenes. Therefore, reducing floaters in the scene can
be effective in minimizing these failure cases. In addi-
tion, this situation reflects the robustness of our sparse
stage, which can effectively eliminate the influence of these



-

1.80.27

10.9/0.04

187/37

7510/91

Figure A. Failure Cases Visualization. Visualization results of some examples where localization is successful in the sparse stage but
failed in the dense stage. The translation error (¢m) and rotation error (°) are indicated below the corresponding stage.

Render

Render

=] |

W

Query

Figure C. Localization Results in Illumination Changes Scenar-
ios.

floaters through the matching-oriented sampling strategy.

More Visualization Results. Fig. D presents the local-
ization visualization results across all scenes for both the
Cambridge Landmarks and 7-Scenes datasets. From left to
right, each column shows the query image, its correspond-
ing dense feature map, the sparse matching result between
the query image and landmarks, the rendered feature map
from the final dense stage, and the stitched result of the
query image with the rendered image using the final pose.
The visualization of the sparse matching results is achieved
by rendering Gaussian landmarks based on the pose esti-
mated in the sparse stage, followed by drawing the matches.

The third column of the figure demonstrates that our
sparse stage achieves robust 2D-3D matching results. This
is attributed to our proposed matching-oriented sampling
strategy and scene-specific detector. Furthermore, the
second-to-last column demonstrates the capability to learn
the feature field using Feature Gaussian. As shown in the
last column, the rendered image aligns precisely with the
query image, highlighting the high accuracy of our local-
ization method. By leveraging the learned feature field, our
approach exhibits remarkable robustness against illumina-
tion changes and weak texture.



Algorithm 1 Matching-Oriented Sampling Algorithm

Require: Gaussians G, training images {/}, feature maps { F}(/)}, anchor number 7, nearest neighbors &
Ensure: Sampled landmarks G

1

[
2N~ o

15:

R A A A

: for each Gaussian g € G do
f + norm(g. feature)
V < {The set of images where ¢ is visible}
5+0
for each Image I € V do
(u,v) < Project(g.center,I)
fimg < norm(GridSample(F; (1), (u,v)))
s s+ <fafimg>
end for
g.score < s/|V|
: end for
: A < RandomSampling (G, n)
G0
: for each anchor a € A do
N, <+ FindkNearestNeighbors(a, G, k)

g* < argmax g.score
gEN,

G+ Guig}

. end for

> Assign scores for each Gaussian
> Normalize Gaussian feature

> The pixel coordinates of the projected Gaussian center
> Extract 2D feature using bilinear interpolation

> Average score across images

> Randomly sample anchors

> Anchor-guided selection

> Select Gaussian with the highest score among neighbors




Scenes datasets.

Figure D. More Visualizations. We show all scenes on both the Cambridge Landmarks and 7



