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A. More Details of Loss Functions
As shown in Sec. 3.5 of the main paper, our overall loss
function consists of three components: Lpose, Lnocs, and
Livfc. Here, we present the detailed formulation of each
loss term.

A.1. Pose losses

Following LaPose [10], we employ similar loss functions to
supervise pose regression. The overall pose loss is

Lpose = ωrotLrot + ωpmLpm

+ ωtransLtrans + ωsizeLsize,
(A.1)

where ωrot, ωpm, ωtrans, and ωsize are the weighting
hyper-parameters.

Specifically, Ltrans and Lsize are utilized to supervise
the scale-agnostic translation and size, respectively:

Ltrans = ∥t̂− tgt∥1,
Lsize = ∥ŝ− sgt∥1,

(A.2)

where t̂ and ŝ represent the predicted scale-agnostic transla-
tion and size respectively, tgt and sgt denote corresponding
ground truth value.

Both Lrot and Lpm serve as supervision terms for ro-
tation learning, where Lrot directly supervises the rotation
matrix, and the point matching loss Lpm [6] is calculated
by first applying rotational transformations to the points on
the model:

Lrot = ∥R̂−Rgt∥1,
Lpm = avgx∈M∥R̂x−Rgtx∥1,

(A.3)

where Rgt represents the ground-truth rotation matrix for
supervising the predicted R̂, and x denotes the sampled
points from the object’s NOCS model M. To handle am-
biguous rotations arising from object symmetry [5], we su-
pervise the prediction using the closest rotation selected
from the proper symmetry group for symmetrical cate-
gories.

A.2. Geometric losses in GIVE

For the implementation of our proposed GIVE strategy, we
utilize Lnocs and Livfc to supervise two intermediate rep-
resentations, the NOCS map and the IVFC map:

Lnocs = ∥Mnocs · (Ngt
map − N̂map)∥1, (A.4)

where Mnocs represents the mask of the NOCS map and the
Ngt

map is the supervision of predicted NOCS map N̂map.
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Livfc = ∥Mivfc · (Cgt
map − Ĉmap)∥1, (A.5)

where Mivfc denotes the mask of the IVFC map and the
prediction of IVFC map Ĉmap is supervised by correspond-
ing ground-truth value Cgt

map.

B. Details of Deformable Convolutional Auto-
Encoder (DCAE)-based module

Throughout the network architecture, the DCAE-based
module serves as the key component for achieving gradual
intra-class variation elimination.

In our implementation, we adopt the deformable convo-
lution (specifically, DCNv3) proposed in [8]. As illustrated
in Fig. A.1, we employ three layers of deformable convo-
lutions with a stride of 2 to extract features and reduce the
resolution from the predicted NOCS map, resulting in a fea-
ture map of size 256 × 8 × 8. Compared to vanilla con-
volutions, deformable convolutions feature adaptable con-
volution kernels, enabling more flexible spatial correspon-
dence between feature maps and input coordinate maps.
This flexibility allows for a more robust capture of category-
consensus information from the NOCS map. The extracted
features are subsequently concatenated with backbone fea-
tures. Finally, the concatenated feature map undergoes three
upsampling operations, consisting of one deconvolution and
two bilinear interpolations, to generate the IVFC map with
redundant instance information eliminated.

C. Details of Category-Consensus Model Re-
construction

As mentioned in Sec. 4.2 of the main paper, to
obtain the mesh models for generating IVFC maps,
we performed surface reconstruction on per-category
mean point cloud models using functions from the
Open3D [11] library. Specifically, we first recon-
structed mesh models directly from point clouds us-
ing the create from point cloud alpha shape function,
followed by applying Laplacian smoothing through the
filter smooth laplacian function. Following the ap-
proach in NOCS [10], we further color-coded the mesh
models based on their coordinate values to obtain the color-
coded category-consensus model, as shown in Fig. C.2.

D. Extended Quantitative Evaluation
D.1. Per-category results

Tab. D.1, Tab. D.2, and Tab. D.3 present the detailed
evaluation results of our GIVEPose for each category on
REAL275, CAMERA25 [7], and Wild6D [1] datasets us-
ing scale-agnostic evaluation metrics [10].

D.2. Detailed Performance Comparison of Our
Method against LaPose

For a more detailed comparison with existing methods, we
provide per-category results of our method and LaPose [10]
in Fig. D.3. As illustrated in the figure, our method shows
significant improvements over LaPose [10] for categories
with large intra-class variation (e.g., camera), which can
be attributed to our gradual intra-class variation elimina-
tion strategy. For the bottle category, our method experi-
ences a slight performance drop, which we attribute to the
joint training of multiple categories, where inter-category
influences may occur. Overall, our method outperforms La-
Pose [10], achieving better average results and superior per-
formance across most categories, thereby demonstrating its
effectiveness.

E. Extended Qualitative Analysis

To facilitate a more comprehensive and intuitive evaluation,
we present extended qualitative comparisons between our
approach and four existing methods [2, 3, 9, 10] in Fig. G.4
and Fig. G.5. These results demonstrate that our method
achieves more accurate category-level pose estimation com-
pared to existing approaches, particularly when handling
categories with large intra-class variations and processing
truncated cropped images.

F. Code and Reproducibility

We provide our PyTorch-based [4] code in the “GIVE-
POSE” folder for anonymous review, with detailed instruc-
tions for reproducing experimental results available in the
“GIVEPOSE/README.md” file. The code will be pub-
licly released upon acceptance.

G. Ethics Statement

Despite the consideration of scene and object diversity in
the publicly available datasets we used, potential biases
continue to exist. We acknowledge the significant computa-
tional resources and energy consumption required for train-
ing and inference, which could raise environmental con-
cerns. Efforts are being made to minimize these impacts
through efficient computation strategies and exploring more
sustainable AI practices. Furthermore, all datasets were
used in compliance with ethical standards, ensuring data
privacy.
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Category NIoU25 NIoU50 NIoU75 10◦0.2d 10◦0.5d 0.2d 0.5d 10◦

bottle 26.6 4.6 0.5 4.6 39.6 4.8 43.5 49.7
bowl 100.0 98.9 73.5 97.9 99.9 98.1 100.0 99.9
camera 60.2 26.3 1.3 10.2 27.8 21.1 69.8 30.8
can 61.3 32.8 6.1 41.7 86.7 41.9 88.7 90.4
laptop 85.4 70.2 33.2 56.6 66.6 61.8 85.4 67.2
mug 95.1 69.3 10.2 56.7 68.5 65.8 99.2 68.5
average 71.4 50.3 20.8 44.6 64.8 48.9 81.1 67.8

Table D.1. Per-category results on the REAL275 dataset using scale-agnostic evaluation metrics.

Category NIoU25 NIoU50 NIoU75 10◦0.2d 10◦0.5d 0.2d 0.5d 10◦

bottle 78.0 57.6 20.4 56.1 82.6 56.2 83.2 87.4
bowl 95.4 86.7 35.6 82.5 95.6 82.9 96.3 95.9
camera 60.0 23.9 3.3 18.1 59.9 21.5 72.6 72.2
can 76.5 52.1 13.4 43.6 78.5 43.6 78.5 87.2
laptop 92.1 74.8 39.3 68.2 89.5 72.0 95.6 91.7
mug 54.8 24.8 4.2 16.3 7.2 22.1 64.1 59.8
average 76.1 53.3 19.4 47.5 75.5 82.4 49.7 81.7

Table D.2. Per-category results on the CAMERA25 dataset [7] using scale-agnostic evaluation metrics.

Category NIoU25 NIoU50 NIoU75 10◦0.2d 10◦0.5d 0.2d 0.5d 10◦

bottle 87.3 62.4 17.4 57.1 76.7 68.9 94.9 77.3
bowl 99.3 91.8 42.9 87 96.2 88.5 99.7 96.3
camera 60.8 22.0 0.3 1.2 2.8 26.4 73.4 3.0
laptop 99.7 99.6 79.9 18 18.1 99.4 99.7 18.1
mug 89.6 26.4 0.1 3.9 7.5 24 93.7 7.5
average 87.3 60.4 28.1 33.4 40.3 61.4 92.3 40.4

Table D.3. Per-category results on the Wild6D dataset [1] using scale-agnostic evaluation metrics.
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Figure G.4. Qualitative comparisons on REAL275. For the 3D box visualization, red denotes the ground truth and green represents the
predicted result. For the axis projections, darker shades indicate the ground truth, while lighter shades correspond to the predicted results.
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Figure G.5. Qualitative comparisons on CAMERA25. For the 3D box visualization, red denotes the ground truth and green represents the
predicted result. For the axis projections, darker shades indicate the ground truth, while lighter shades correspond to the predicted results.
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