GaussianFormer-2: Probabilistic Gaussian Superposition for Efficient 3D
Occupancy Prediction

Supplementary Material

Fig. 1. Visualizations of Gaussians, camera-view and overall occupancy on nuScenes. We provide the input RGB images and their
corresponding camera-view occupancy in the upper part. And we visualize the predicted 3D Gausians (left), the semantic occupancy in the
global view (middle), and in the bird’s eye view (right) in the lower part.

A. Video Demonstration

Fig. 1 shows a sampled frame of our video demonstration
included in the supplementary material for 3D semantic oc-
cupancy prediction on the nuScenes dataset [2]. We note
that the camera-view occupancy visualizations align well
with the input RGB images. Moreover, each instance is
sparsely described by only a few Gaussians with adaptive
shapes, which demonstrates the efficiency and the object-
centric nature of our model.

B. Visualizations on KITTI-360

We provide visualization results of Gaussians and occu-
pancy on the KITTI-360 dataset [4] in Fig. 2. We observe
that our GaussianFormer-2 is able to predict both intricate
geometry and semantics of the 3D scene. Furthermore, the
3D Gaussians in our model are adaptive in their scales ac-
cording to the specific objects they are describing, com-
pared with isotropic spherical Gaussians with maximum
scales in GaussianFormer [3].

C. Comparison with Other Efficient Methods

In this section, we provide a quantitative comparison be-
tween the 3D Gaussian representation and other sparse

methods in Tab. 1. In summary, sparse-voxel-based meth-
ods are limited by predefined grid patterns and cannot rep-
resent fine-grained structures. Point-based models assume
a homogeneous influence on the neighborhood, resulting in
less expressiveness.

Tab 1. Comparisons with other methods on SurroundOcc.

Method ‘ Representation  Resolution ‘ mloU  ToU
SparseOcc [5] Sparse voxels 32000 16.14  28.20
OPUS [6] Points 76800 16.67 24.02

GaussianFormer-2 \ 3D Gaussians 12800 \ 20.82 31.74

D. Further Analysis
D.1. Multiplication Theorem of Probability

We explain the effectiveness of the probability multiplica-
tion theorem in modeling the geometry structure in Fig. 3.
First, the inequality 1 > «(x) > a(x;G;) > 0 holds for
any Gaussian G;, which implies the confidence of x being
occupied would be large enough (a(x) — 1) if any single
Gaussian is close to it (a(x;G;) — 1). Second, the gra-
dient of a(x) w.rt. a(x;G;) writes [, ;(1 — a(x; G;)),
which produces adaptive gradients according to the differ-
ent contributions of Gaussians, making each Gaussian focus
on its local neighborhood. In contrast, the additive form is
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Fig. 2. Visualizations of Gaussians and occupancy on KITTI-360. Our method captures both the intricate geometry and semantics of

the scene with shape-adaptive Gaussians.
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Fig. 3. Illustration for advantages of the multiplicative form.

unbounded and equally encourages all Gaussians to overlap
with uniform gradients.

D.2. Gaussian Mixture Model for Semantics

Since GaussianFormer does not normalize the semantics,
we compare our method with an adapted version of Gaus-
sianFormer with semantic normalization to further verify
the effectiveness of the probabilistic design. We have ob-

served suboptimal performance in Tab. 2 if we simply nor-
malize semantics without geometric probabilistic modeling.

To provide further analysis on semantic modeling, the
final normalized logits for point x writes e(x;G) =
>; p(G;|x)¢; as in Eq. (6). Since ¢;s are irrelevant to spa-
tial overlap, we can regard them as constants. The cross-
entropy loss will maximize p(G*|x) corresponding to the
largest €¥* = max(¢}*, ..., €%), where yx denote the label
of x. Maximizing p(G*|x) will then pull closer G* and
push away other Gaussians.

In addition, the geometry and semantic predictions are
one-stage. And we think they are complementary and or-
thogonal because in essence, geometry and semantic pre-
dictions focus on optimizing a(x; G;) and ¢;, respectively.



Tab 2. Ablation on semantic normalization.

Method ‘ Normal}ze ‘ mloU IoU
Semantics
GaussianFormer X 16.00 28.72
GaussianFormer v 18.90 29.45
Ours \ v | 2032 3104
E. Metric Details

Position. Gaussians, even after full training, can still be
found in unoccupied space due to the localized nature of the
receptive field. These Gaussians fail to describe meaningful
structures, rendering them ineffective and devoid of practi-
cal utility. A higher proportion of Gaussians in unoccupied
space indicates suboptimal utilization. Hence, we define the
percentage of Gaussians in correct positions (Perc.) as:

N,
correct . ].00%)7 (l)

total

Perc. =

where Neorrect, and Niora1 denote the number of Gaussians of
which means are in occupied space, and the total number
of Gaussians, respectively. A higher percentage indicates a
better alignment of the Gaussians with occupied or mean-
ingful area in the space, thus reflecting a more efficient use
of the model’s capacity.

The above measurement provides a hard evaluation,
where Gaussians are either classified as being in correct or
incorrect positions without considering their proximity to
the nearest occupied area. This binary approach does not
capture how close Gaussians in unoccupied regions are to
meaningful positions. To address this limitation, we define
a complementary soft measurement as the average distance
of each Gaussian to its nearest occupied voxel center, de-
noted as Dist. (in meters), computed as follows:

P
. 1 .
Dist. = FEEHEI\T}Hmi—VHl, 2

where m;, V, v, and ||m; — v||; denote the mean of the
i-th Gaussian, the set of occupied voxel centers, the center
of one voxel in this set, and L1 distance between the mean
of the Gaussian and the voxel center, respectively. Note that
this distance is calculated with respect to the voxel center,
and thus Gaussians positioned within the correct occupied
area may also have a non-zero distance.

Overlap. The overall overlapping ratio of Gaussians
(Overall.) provides a global perspective on the redundancy
in the Gaussian representation. Each Gaussian is modeled
as an ellipsoid, where the semi-axis lengths are derived from
the Mahalanobis distance at a chi-squared value of 6.251,
corresponding to the 90% confidence level of a Gaussian
distribution in three degrees of freedom (DoFs). The Over-
all. is then calculated as the ratio of the summed 90% confi-
dence volumes V; g9 of all Gaussians to the total coverage

volume of all Gaussians Vioverage in the scene:

P
2i=1 Vioon

coverage

Overall. = , 3

where Vigverage TEpresents the volume of all Gaussians com-
bined as a unified shape. To estimate Vioyerage, W€ employ
the Monte Carlo method where a large number of points are
randomly sampled within the bounding box of the scene.
For each sampled point, we check whether it lies within the
90% confidence ellipsoid of any Gaussian. The volume is
then approximated as:

N;
Vcoverage = Vicene * N71, “4)
total

where Nj,, and Ny, are the number of sampled points
that fall within the 90% confidence ellipsoid of at least one
Gaussian, and the total number of sampled points, respec-
tively. This approach ensures an accurate estimation of the
unified volume, efficiently handling the overlapping regions
of the Gaussians by not double-counting them.

We next detail the derivation of the ellipsoid volume cor-
responding to the 90% confidence region of a 3D Gaussian
distribution. Considering a multivariate Gaussian distribu-
tion in 3D defined as:

g(x) = Wexp( — %(x — m)TE_l(x — m)), 5)
where x, ¥, and |X| are the mean vector, 3x3 covariance
matrix, and the determinant of the covariance matrix, re-
spectively. The Mahalanobis distance d of point x from the
mean m is defined as:

d*(x,m) = (x —m)TZ 7 (x — m). (6)

The 90% confidence region of the Gaussian distribution cor-
responds to the set of points for which the Mahalanobis dis-
tance satisfies:

d® < x50 ~ 6.251, (7

where X3 (g is the chi-square critical value for three degrees
of freedom at the 90% confidence level. For a Gaussian dis-
tribution, the semi-axis lengths are determined by the square
root of the eigenvalues of X, scaled by x3 ;4. Thus, the
volume of the ellipsoid from 90% of the 3D Gaussian dis-
tribution is:

4
Voow, = g7r(6.251)3/2|2|1/2. (8)

A higher value of Overall. indicates greater overlapping
volumes among the Gaussians, signifying redundancy in
Gaussian representation. This metric provides insights into
the utilization of Gaussians to represent the scene.



The individual overlapping ratio of Gaussians (Indiv.)
offers a fine-grained analysis of the overlap between Gaus-
sians in a scene. This measurement quantifies the degree
to which each Gaussian overlaps with all other Gaussians,
averaged across all Gaussians in the scene. The value of
this metric indicates approximately how many times the
volume of a single Gaussian is fully overlapped with other
Gaussians on average. To compute this, we use the Bhat-
tacharyya coefficient [ 1], which measures the similarity be-
tween two Gaussian distributions. The individual overlap-
ping ratio is defined as:

P
1
Indiv. = 5> 7| > BCi; |, ©)
i=1 \ j#i
where BC; ; is the Bhattacharyya coefficient between the
i-th and j-th Gaussians, given by:

BC, . = ;mefé(mﬁmjfzfjl(mﬁmj) (10)
T VIEl ’
where 3;; = 1(3; 4+ %) is the average covariance ma-

trix. A higher value of Indiv. indicates more redundancy, as
Gaussians are heavily overlapping with each other.

F. Limitations and Failure Cases

We observe that the temporal flickering of Gaussians in the
video demonstration is one of the main limitations, and we
think streaming prediction considering past frames would
alleviate this problem. Furthermore, although the Gaus-
sians in GaussianFormer-2 show a tendency to move to-
wards occupied regions as shown in Figure 7 thanks to the
distribution-based initialization, it is still worth investigat-
ing how to guide Gaussians more effectively.
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