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Supplementary Material

A. Appendix
A.1. Adaptive Edge Detection from Flow Maps
In Sec. 3.2.2, to refine motion details and incorporate shape
information, we build boundary constraint based on human
boundaries and edges of flow maps. The human boundaries
are detected using a Canny operator. However, the edges
of the flow map cannot be extracted using simple operators
like the Canny operator. Therefore, we designed an edge
detection method with learnable thresholds specifically for
flow maps. We define the edges of a flow map M as a
series of discrete points, meaning that these points exhibit
either intensity or angular discontinuities relative to their
neighboring points. Intensity discontinuities indicate sig-
nificant differences in offset magnitude between a point i
and its neighbors j, e.g., the boundary between a moving
foreground and a static background. This can be mathemat-
ically expressed as:

sI = {i → M | |↑M i↑ ↓ ↑M j↑| ↔ ωi} , (10)

where ωi represents the learnable intensity threshold. On
the other hand, angular discontinuities refer to situations
where the angle of the offset between i and j exhibits a sig-
nificant difference, often occurring between different body
patterns. This can be represented as:

sA =

{
i → M | M i ·M j

↑M i↑| · ↑M j↑
↔ ωa

}
, (11)

where ωa represents the learnable angular threshold. There-
fore, for any flow map M , its edge map s can be formulated
as the union of intensity and angular discontinuities:

s = sI ↗ sA. (12)

A.2. Patch-Centroid Distance Validation
In Eq. (8), we propose a method to approximate the Cham-
fer distance using the patch-centroid distance. Here, we
provide some validations for this approximation. Based on
the following formulation, the Chamfer distance can be ap-
proximately transformed, as shown below, under the condi-
tion of sufficient curve smoothness, leading to the theoreti-
cal conclusion presented in the main text:
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Figure 10. Edges of flow map. Through the complementarity of
intensity and angular edges (highlighted in the red box), we can
effectively detect the edges present in the flow map.

Figure 11. Validation for patch-centroid distance. By using the
patch-centroid distance as the sole loss function, we can effectively
train a network to deform one curve into another by applying an
estimated morph.

Apart from the theoretical validation, we also conduct ex-
periments on the MNIST dataset to verify whether the pro-
posed patch-centroid distance can effectively measure the
distance between two curves. As shown in Fig. 11, in the
experiment, a network tries to apply a non-rigid transfor-
mation (Morph) to a moving image (Moving) to generate
a moved image (Moved), aligning it with a specified target
image (Target). By using the patch-centroid distance as the
sole loss function to measure the curve distance between
the moved and target images, the network successfully con-
verges. This experimental result further demonstrates the
patch-centroid distance as an effective approximation of the
Chamfer distance.

A.3. Evaluating Action Recognition with TSN
Similar to Sec. 4.1, besides the results shown in Tab. 2, we
also validate the improvement in real-time motion analysis
performance achieved by H-MoRe on the action recognition
task. Following the same experimental setup as described
in Sec. 4.2, we conducted a quantitative comparison on the
Diving48 dataset using TSN instead of Video-FocalNets as
the action recognition classifier. To validate the improve-
ment in real-time motion analysis performance achieved by
H-MoRe, we conducted a quantitative comparison on the
Diving48 dataset using TSN as the action recognition clas-
sifier. As shown in Tab. 6, compared to using optical flow
as the motion representation input, using H-MoRe as the in-
put significantly improved classification performance. This
further demonstrates the effectiveness of H-MoRe in real-
time scenarios. Besides, due to the use of additional output
channels (optical flow: 2 more channels; H-MoRe: 4 more



Methods Acc@1→ Acc@5→ Params (M)

w/o Flow 65.58 95.18 4.5

RAFT 66.09 93.45 4.6 + 5.25
GMA 69.54 94.77 4.6 + 5.88
GMFlow 70.91 95.89 4.6 + 4.68
CRAFT 70.20 95.74 4.6 + 6.30
SKFlow 67.26 94.57 4.6 + 6.27
VideoFlow 71.07 96.80 4.6 + 12.65
FlowFormer++ 70.66 95.94 4.6 + 16.15

H-MoRe Ours 72.69 97.60 4.7 + 5.57

Table 6. Quantitative comparison for action recognition in
real-time scenarios. Alongside with numbers of learnable param-
eters in whole recognition pipeline containing motion estimation
networks and classifiers.

channels), the number of parameters in classifiers fluctuates
slightly compared to the vanilla TSN. However, this does
not affect performance. We have also indicated these fluc-
tuations in the tables (Params).

A.4. Skeleton Map Alignment Methods

In Sec. 3.3, we mentioned that to impose a skeleton con-
straint on the local flow Ml, the original skeleton con-
straint F needs to be transformed to F ↓. This is because
the εK used in F represents the skeleton’s offset relative
to the environment rather than relative to the subject itself.
Therefore, we need to compute the skeleton offset relative
to the subject itself by aligning the skeleton map Kt+1 from
frame Xt+1 to Kt from Xt. In practice, we applied two
different alignment methods: (i) full-body and (ii) head-
anchor. Full-body alignment aligns Kt+1 by solving the
following equation using the least squares method:

H
↓ = argmin

H

↑H ≃Kt+1 ↓Kt↑ ,

K ↓
t+1 = H

↓ ≃Kt+1.

(14)

Here, H is a homography matrix, which enables skeleton
map alignment through projection. This method is suitable
for scenarios where the human body does not undergo rota-
tion, such as in gait recognition or video generation.

However, when body rotation occurs, as in diving sce-
narios, full-body alignment based on all skeletal points may
lead to errors in motion estimation. To address this, we
use head-anchor alignment. This method employs an affine
transform to rotate and scale Kt+1, ensuring the head re-
gions in the skeleton maps at the two time points are closely
matched. Based on this alignment, we obtain the trans-
formed K ↓

t+1.

Figure 12. Pipeline for gait recognition experiments. (a) illus-
trates how we fine-tune the optical flow estimation networks. (b)
demonstrates how motion information is integrated into the gait
recognition pipeline.

A.5. Details of Experimental Settings

In Sec. 4, we compare the accuracy of H-MoRe in repre-
senting motion against optical flows across three tasks. In
this subsection, we provide detailed explanations and addi-
tional information about our experimental workflow.

A.5.1. Gait Recognition

For the gait recognition task, we first extract 2, 800 se-
quences from the CASIA-B training set to fine-tune the op-
tical flow estimation models (Fig. 12 (a)) and train our H-
MoRe as denoted in Sec. 3.3. After fine-tuning and train-
ing, the parameters of these motion estimation networks are
frozen. We then use these models as inputs to train classi-
fiers, specifically GaitBase or GaitSet networks with identi-
cal structures (Fig. 12 (b)).

Since silhouettes are the default input for gait recogni-
tion and require a single-channel input, we adjust the in-
put layer of the classifier for optical flow (2 channels) to
support three-channel input. For H-MoRe, which includes
world flow (2 channels) and local flow (2 channels), we use
a five-channel input. During this stage, only the classifier’s
parameters are trained. After training, all parameters are
fixed, and the models are then tested on the testing set, pro-
ducing the results shown in Tab. 1.

A.5.2. Action Recognition

For the action recognition task, we similarly extract 14, 000
sequences from the Diving48 training set to fine-tune
the optical flow estimation models and train H-MoRe
(Fig. 12 (a)). After freezing the parameters of these mo-
tion estimation networks, we train downstream classifiers:
Video-FocalNets (Tab. 2) and TSN (Tab. 6).

For each moment, RGB images, which are the default
input for action recognition, are combined with optical flow
or H-MoRe and fed into the classifier. Specifically, these in-
puts are either (RGB 3 channels + Optical Flow 2 channels)
or (RGB 3 channels + H-MoRe 4 channels).



Figure 13. Pipeline for action recognition experiments. Similar
to the gait recognition pipeline, the main difference lies in using
RGB frames as additional input instead of silhouettes.

Figure 14. Pipeline for video generation experiments. This fig-
ure illustrates how we use motion representations as conditions
for the video generation model to guide video reconstruction. For
more details on the network structure, please refer to the LGC-VD.

A.5.3. Video Generation
Our video generation tasks in the main text can be regarded
as motion-guided video reconstruction tasks. Unlike the
first two tasks, this task is designed to directly evaluate the
accuracy of motion provided by H-MoRe. Here, we use
the motion at each time step as a condition for a diffusion
model to reconstruct the original video. This implies that
ignoring lighting variations, the SSIM and FVD scores in
Tab. 2 are highly correlated with the accuracy of the motion
information provided by optical flow and H-MoRe.

We fine-tune the optical flow estimation models and
train H-MoRe using 600 sequences from the UTD-MHAD
dataset, then freeze their parameters. Notably, unlike the
pipelines in the previous tasks, this task does not concate-
nate motion directly with input (the first two frames of
the sequence). Instead, the motion is used as a condition
and integrated into the diffusion models via cross-attention
(Fig. 14).

These three tasks collectively demonstrate the effectiveness
of H-MoRe in providing accurate motion information, ei-
ther indirectly (gait recognition and action recognition) or
directly (video generation). Additionally, Fig. 7 in the main
text and attached video provide a more intuitive visual com-
parison between our H-MoRe and optical flow, highlighting
their respective differences and characteristics.

B. Variables
In the following table, we summarize the symbols used in
the main text, along with their detailed definitions and rep-

resentations.

Variables Description Type [shape]

Mw H-MoRe’s world flow. It represents the
offset of each body point relative to the en-
vironment, e.g., the ground or the camera.

Matrix
[H →W → 2]

Ml H-MoRe’s local flow. It represents the off-
set of each body point relative to the subject
themselves.

Matrix
[H →W → 2]

Xt Xt+1 Two consecutive frames. They are usually
two frames from a video, spaced more than
0.1 seconds apart.

Matrix
[H →W → 3]

Kt Kt+1 Skeleton maps. They represent a series of
(210) skeletal points of a person in frames
Xt and Xt+1, with each point containing
coordinates and visibility information (c).

Matrix
[210→ 3]

ωK Skeleton offsets. It represents the offset of
each point in the skeleton map between two
time steps, i.e., Kt+1 ↑Kt.

Matrix
[210→ 3]

e Human boundaries. Curve
s Edges of flow map. Curve
Pe Human boundaries within patch P . Curve
Ps Edges of flow map within patch P . Curve

p Any point within the human body in the
flow maps.

Point

q̂ The closest point within skeleton offsets ωK
with the highest visibility towards p.

Point

i Any point on the edges of flow map s. Point
ĵ The nearest point within human boundaries

e towards i.
Point

cPe The centroid of curve Pe. Point
cPs The centroid of curve Ps. Point

vs Subject motion. It represents the overall
motion trend of subjects.

Vector
[!x,!y]

up The estimated flow M at point p. Vector
[!x,!y]

kq̂ The skeleton offset ωK at point q̂. Vector
[!x,!y]

! H-MoRe’s network component. It esti-
mates world flow Mw between consecutive
frames Xt and Xt+1.

Network
[Params: ↑ 3.4M ]

” H-MoRe’s network component. It esti-
mates subject motion vs based on world
flow Mw.

Network
[Params: ↑ 2.1M ]

F Our skeleton constraint. It ensures that
each body point’s movement adheres to
kinematic constraints.

Function

G Our boundary constraint. It aligns human
shapes onto our estimated flow maps.

Function

FA Angular constraint. Component of skele-
ton constraint.

Function

FI Intensity constraint. Component of skele-
ton constraint.

Function

C Chamfer distance between two curves. Function
D Euclidean distance between two points. Function

ε1 Learnable parameters in !. Parameters
ε2 Learnable parameters in ”. Parameters

ϑa Threshold for angular constraint FA. Constant
ϑl
i ϑ

h
i Low and high boundary threshold for inten-

sity constraint FI .
Constant

Table 7. Symbols used in the main text. Additionally, the de-
scription includes its relevant information.


