
Appendix of HiRes-LLaVA: Restoring Fragmentation Input
in High-Resolution Large Vision-Language Models

A. Implementation Details
Training datasets. Table 1 shows the detailed dataset con-
struction of the capability enhancement stage of HiRes-
LLaVA. Specifically, it has 830K captioning including the
ShareGPT4V [7], ShareGPT4o [16] and ALLAVA [5]. There
are 821K OCR data from SynthDoG [15] including English
OCR data as well as MMC-Alignment [25], UReader [41],
K12 printed [1] which is a short OCR dataset. There is also
200K text instruction data from Magpie Pro [40], sampling
from the data generated by Llama3.1-70B, Llama3-70B, and
Qwen2-72B.

Task Datasets(# Sample) Sum

Caption ShareGPT4V(89k),
ALLAVA4V(684k),
ShareGPT-4O(57k).

830K(44.8%)

OCR SynthDoG-EN(300k),
MMC-Alignment(200k),
UReader(101k),
K12 printed(120k),
SynthDoG-ZH(100k).

821k(44.4%)

Text Magpie Pro(200k) 200k(10.8%)

Total 1.8M

Table 1. Datasets in the capability enhancement stage.

Table 2 shows the detailed construction of the 3M in-
struction tuning dataset. First, we remove 23K caption
data and ShareGPT data from original LLaVA-158K [26]
and include GPT4V/GPT4o-generated caption data, i.e.,
LAION-GPT4v [17], ShareGPT4V [7], ShareGPT4o [16]
and ALLAVA instruction data [5]. To enhance the common
knowledge of our model, we convert the visual spatial reason-
ing [23], AI2D [13], and Science QA [29] training set into
the instruct-tuning data. To activate the understanding sci-
ence, we collect data from ViQuAE [19], TextbookQA [14],
IconQA [28] and sampled 50k data from the Cambrian’s
Data Engine [38]. We also collect document-oriented data
from diverse datasets, includes ChartQA [30], DVQA [12],
PlotQA [32], OCRVQA [33], ST-VQA [3], DocVQA [10],

InfoVQA [31], DeepForm [37], TAT-DQA [42], Table-
Fact [8], LRV-Chart[24] and WebSRC [9]. We merge some
datasets from Cauldron [18], including RAVEN, ROBUT-
SQA, ROBUT-WTQ, HiTab, IAM, Rendered Text, ORAND-
CAR-A, Visual7W, Chart2Text, AI2D, vistext, Diagram-
image-to-text.
Module Design Details. The self-mining sampler consists
of one cross-attention block with an output layer norm. The
cross-attention block has a cross-attention layer and a FFN.
Both of them apply the residual shortcut. The cross-attention
layer has two layer norm for the query and key/value, respec-
tively. As for the SliceRestore Adapter, the parameters of
the self-attention layer with the layer norm are initialized
from the pretrained CLIP self-attention at the same depth.
To provide the positional information between slices, we
apply a 2D RoPE [35, 36] on the global fusion module.
Training pipeline. We list the hyperparameters for the three-
stage training at Tab. 3.
Evaluation details. We utilize the open-source evaluation
tools, lmms-eval [20], to align our evaluation method to
LLaVA-NeXT [27].
Benchmark construction. In our EntityGrid-QA, the con-
struction of multiple choices is a vital part of EntityGrid-QA.
For different types of entities, we apply different augmen-
tations to obtain the other three choices for each question.
For text and decimal, we randomly delete, add, or change
one letter or digit. The object figures are collected from the
COCO dataset [22]. For both categories of icons and objects,
we use GPT-4 to list three other entities’ names with similar
appearance as the negative options.

B. More Ablation
Comparison on the Same Training Set To demonstrate the
effectiveness of our method, we compare the performance of
LLaVA-1.5 and our method trained on the same data. Specif-
ically, we train these two models on two different scale train-
ing data set, i.e., LLaVA-655K [21] and LLaVA-655K with
additional Doc-79K data (the dataset of our ablation setting).
Results from Tab. 4 show that adding 79K document data can
highly improve models’ performance on ChartQA, DocQA
and InfoVQA but slightly drops the performance on MM-
Bench and MME-Perception. Hires-LLaVA outperforms the
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Task Datasets(# Sample) Sum

General QA LLaVA(135K), ALLaVA(660K) VQAv2(83K),
GQA(72K), OKVQA(9K), A-OKVQA(66K),
VSR(12K), ShareGPT4V(89K), TextCaps(22K), Laion-
GPT4V(11K), ShareGPT-4O(57K), RAVEN(3K), Vi-
sual7w(14K), RefCOCO(48K), VG(86K)

1.4M (48.0%)

Science ScienceQA(19K), ai2d(14K), ViQuAE(4K),
TextbookQA(21K), IconQA(30K),
Data Engine(50K)

139K(4.6%)

Doc QA/OCR OCRVQA(80K), TextVQA(57K), SynthDog(30K),
LLaVAR(39K), WikiTableQuestions(29K),
KleisterCharity(15K), iiit(6K), MLHME(30K),
VisualMRC(19K), ChartQA(48K), DocVQA(102K),
InfoVQA(33K), DVQA(200K), PlotQA(10K),
TAT-DQA(2K), TableFact(65K), WebSRC(5K)
DeepForm(8K), Chart2text(27K)
Vistext(10K), chrome writting(9K), IAM(6K),
Rendered text (10K), Orand-CAR-A(2K), lrv-chart(2K),
ROBUT-SQA(9K), ROBUT-WTQ(4K), Hitab(3K),
Diagram-image-to-text(0.3K).

0.9M(30.1%)

Code Generation WebSight(50K) 50K(1.7%)

Text-only Magpie-Pro(150K), Evol(142K),
mathinstruct(81K), mathplus(95K).

469K(15.6%)

Total 3M

Table 2. Summary of datasets used in the instruction tuning stage.

Settings Stage-1 Stage-2 Stage-3

Vi
si

on Resolution 448×{{1×2}, · · · , {3×3}} 448×{{1×2}, · · · , {3×3}} 448×{{1×2}, · · · , {3×3}}

# Tokens Max 256× (1 + 9) Max 256× (1 + 9) Max 256× (1 + 9)

D
at

a Dataset LLaVA-Pretrain Enhancement (Tab. 1) SFT (Tab. 2)
# Samples 558K 1.8M 3M

Tr
ai

ni
ng

Trainable Projector ViT & Projector & LLM SRA & Projector & LLM
Load SRA ✗ ✗ ✓

Batch Size 256 256 256
LR: LLM 2× 10−5 2× 10−5 2× 10−5

LR: Projector 1× 10−3 2× 10−5 2× 10−5

LR: ViT / SRA - 2× 10−6 2× 10−4

Epoch 1 1 1

Table 3. Detailed configuration for three-stage training of HiRes-LLaVA. The table illustrates the vision configurations, dataset
characteristics, and training hyperparameters.



Model Data VQA-Text ChartQA DocQA InfoVQA MMB MME-P

LLaVA-1.5 LLaVA-665k 53.3 13.7 14.2 19.4 71.1 1459.66
LLaVA-1.5 LLaVA-665k + Doc-79k 53.3 23.8 22.6 31.4 70.7 1424.6

HiRes-LLaVA LLaVA-665k 62.4 19.8 37.7 26.0 72.3 1486.1
HiRes-LLaVA LLaVA-665k + Doc-79k 62.3 57.6 58.5 39.2 71.1 1444.8

Table 4. Ablation study of different training data. Using the same
training data, our HiRes-LLaVA consistently outperforms LLaVA-
1.5, demonstrating the superior effectiveness of our approach.

Type VQA-Text ChartQA DocQA InfoVQA MMB MME-P
Same 57.2 39.7 52.6 37.6 61.3 1379.8

Separated 61.8 58.8 59.7 41.4 65.5 1456.1

Table 5. Ablation of the separator. ‘Separated‘ means three separa-
tors are the difference and ‘Same‘ means that three separators are
the same.

LLaVA-1.5 under these two training data sets, confirms that
the superior performance can be attributed to the method
itself rather than the volume of data.
Ablation of the separators To further evaluate the effect
of the separators, we conduct experiments on whether the
separators are different or the same. Tab. 5 demonstrates
that using separated separators greatly outperforms using
the same ones which would confuse the model about the
position of slices.

C. Efficiency Analysis
Comparison with other LVLMs. To validate the efficiency
of our method, we compare the computational cost, training,
and inference times with various LVLMs in Appendix C.
For computational cost, we report the FLOPs of the ViT
backbone, connector, and LLM components for each model.
Experimental results demonstrate that HiRes-LLaVA, de-
spite processing inputs at twice the resolution of LLavA-
Next (13442 vs. 6722), is able to reduce training time by
approximately 74%.
Comparison with other downsampling methods. We also
compare the FLOPs and training time of our proposed down-
sampling strategy SMS with other vision token downsam-
plers, including ConcatChannel [6], Q-Former [2], and C-
Abstractor [4], as shown in Tab. 7. The results show that our
SMS, even when combined with additional components like
SRA, achieves competitive efficiency compared to existing
state-of-the-art downsamplers.

D. Discussion
What’s the goal of the EntityGrid-QA benchmark? The
goal of our EntityGrid-QA benchmark is to assess the frag-
mentation issue in LVLMs (Large Vision-Language Models)
when processing high-resolution inputs, rather than their
ability to identify different types of objects. To address this,
EntityGrid-QA synthesizes images by iteratively placing ob-
jects in different positions, allowing us to evaluate how these

Training Inference FLOPs Training Inference
batch size Resolution ViT Connector LLM time time

HiRes-LLaVA

2 1344x1344 6.6 T 195.2 G 37.1 T 60.7h (15.9%) 15.4m

HiRes-LLaVA w/o SRA

2 1344x1344 6.5 T 195.2 G 37.1 T 59.5h (15.6%) 12.9m

LLaVA-Next (LLaVA-1.6)

2 1344x1344 Out of the memeory

1 672x672 1.9 T 120.8 G 44.0 T 381.0h 13.2m

Table 6. Comparison of the efficiency of different models. Note
that training time is assessed under the SFT setting on a machine
with 8 V100 GPUs. The inference time is assessed on the InfoVQA
benchmark with 6096 images by using the lmms-eval. Note that
using the same batch size per device and resolution, LLaVA-Next
would be out of the memory. The ratios of training time for ours
relative to LLaVA-Next are marked in purple.

Components FLOPs Training
Downsampler SRA ViT Sampler LLM Time

NoDownsample ✗ 6.5 T 410.8 G 148.3T -

ConcatChannel ✗ 6.5 T 164.3 G 37.1 T 58.6h
Q-Former ✗ 6.5 T 205.5 G 37.1 T 58.9h
C-Abstractor ✗ 6.5 T 258.2 G 37.1 T 60.7h
SMS ✗ 6.5 T 195.2 G 37.1 T 59.5h
SMS ✓ 6.6 T 195.2 G 37.1 T 60.7h

Table 7. Ablation study of the efficiency of individual components
for different downsamplers. We assume the inputs are an image
with 16 slices and 100 text tokens. Note that no downsampling
method causes out-of-memory (OOM) issues during training. Train-
ing time is assessed under the SFT setting on a machine with 8
V100 GPUs.

Benchmarks Slicing Strategy Target Issue

LLaVA-UHD’s Overlapped Counting
Our EntityGrid-QA Non-overlapped Fragmentation

Table 8. The differences between our EntityGrid-QA and LLaVA-
UHD’s benchmark [11].

models perform on the edges and the center of the slices.
Compared to harvesting real-world images with answer tar-
gets on the edges of slices, the synthesized approach is more
simple-to-collect, effective, flexible, sufficient to evaluate
the fragmentation issue.
Compared with LLaVA-UHD. The target issues and slicing
strategies are different between Hires-LLaVA and LLaVA-
UHD [11]. While LLaVA-UHD reveals the counting prob-
lem in the overlap slicing strategy for the high-resolution
image inputs, Hires-LLaVA focuses on the fragmentation is-
sues of non-overlapped slicing strategy which is commonly
used in recent open-sourced high-resolution LVLMs. Ta-



ble 8 summarize the differences of our EntityGrid-QA and
LLaVA-UHD’s benchmark.

E. More Visualization
Samples from EntityGrid-QA Benchmark. We illustrate
three examples from our proposed EntityGrid-QA bench-
mark in Fig. 1. These four samples visualize examples of
the four tasks in the benchmark we proposed. For each task,
we write or paste the digital number or object directly onto
each position of an empty image, and ask questions to the
models.
More Qualitative Results. To further validate the effec-
tiveness of our model, we illustrate the more qualitative
results of InfoVQA, ChartQA and V* Benchmark in Fig. 2
and Fig. 3. Moreover, we give two qualitative examples to
present the HiRes-LLaVA’s capability of generating HTML
code when given a website image in Fig. 4.

F. Broader Impacts
The development of HiRes-LLaVA advances the field of
vision-language models and has broad implications for vari-
ous applications, including document analysis, medical imag-
ing and remote sensing. However, alongside these potential
benefits, there are considerable concerns.

HiRes-LLaVA, not having undergone rigorous safety
training, might generate harmful or inappropriate content,
leading to legal and ethical issues. Furthermore, its enhanced
ability to process high-resolution inputs could be misused
for creating misleading news, contributing to disinformation.
These potential negative impacts highlight the need for care-
ful management and ethical guidelines in the deployment of
such technologies.



(a) Decimal

(b) Text

(c) Object

…

…

…

…

…

…

What is the number in the picture?
A. 0.0002168
B. 0.002165
C. 0.002168
D. 0.802160

What is the letter in the picture? 
A. the letter is okuys
B. the letter is ouys
C. the letter is okyys
D. the letter is ouys

(d) Icon

… …
What is the icon in the picture?
A. Cylinder
B. raccoon
C. fence
D. bowling_pin

What is the object in the picture?
A. bed
B. couch
C. Bench
D. chair

Figure 1. Examples of our proposed EntityGrid-QA Benchmark.



LLaVA-Next: politics Monkey: politics
Ours: civil unrest

Q: What category was the top story on the 
10th of June?

LLaVA-Next: waste Monkey: pollution
Ours: ocean pollution

Q: How many buildings were constructed 
by Hemlow?
LLaVA-Next: 21 Monkey: 9
Ours: 12

Q: What is the third ingredient listed to 
make Pasta?
LLaVA-Next: water Monkey: eggs
Ours: salt

Q: Who was the opponent of India in 
the semifinals of World Cup 2011?

LLaVA-Next: england Monkey: sri lanka
Ours: pakistan

×
√

×

×
√

×

Q: Which environment issue is mentioned 
in the bottom row of the bulb image in the 
infographic?

×
√

×

×
√

×

Need to counting the number of buildings

× ×
√

Figure 2. Qualitative results from InfoVQA [31].



LLaVA-Next: 10.4 Monkey: 12.13
Ours: 10.94

Q: What was Belgium's GDP in 2011?

Q: What is the color of the woman‘s scarf ?
(A) white
(B) red
(C) yellow
(D) green
LLaVA-Next: A Monkey: A
Ours: B

Q: What is the cartoon character on the clock.
(A) Bugs Bunny
(B) Mickey Mouse
(C) SpongeBob
(D) Donald Duck

LLaVA-Next: C Monkey: A
Ours: B

×
√

×

LLaVA-Next: 37596.8
Monkey: 386174.7
Ours: 375967.8

×
×

√

Q: What was the mortgage debt in the 
United States in 2020?

×
√

××
√

×

Figure 3. Qualitative results from ChartQA [30] and Vstar Benchmark [39]. We use the red circle to highlight the answer target in the
image.



GT

Ours

GT Ours

Figure 4. Qualitative results on Image2HTML task [34]. We visualize convert the generated html code to website image and compare to
the input image.
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